NASA TECHNICAL NOTE NASA TN D-2539 (ACCESSION NUMBER) (ACCESSION NUMBER) (CODE) (CODE) (CATEGORY) SONIC-BOOM EXPOSURES DURING FAA COMMUNITY-RESPONSE STUDIES OVER A 6-MONTH PERIOD IN THE OKLAHOMA CITY AREA by David A. Hilton, Vera Huckel, Roy Steiner, and Domenic J. Maglieri Langley Research Center Langley Station, Hampton, Va. GPO PRICE \$ COTS PRICE(S) \$ ACCOUNTY AC NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. DECEMBER 1964 ### SONIC-BOOM EXPOSURES DURING FAA COMMUNITY-RESPONSE STUDIES OVER A 6-MONTH PERIOD IN THE OKLAHOMA CITY AREA By David A. Hilton, Vera Huckel, Roy Steiner, and Domenic J. Maglieri Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ### SONIC-BOOM EXPOSURES DURING FAA COMMUNITY-RESPONSE STUDIES OVER A 6-MONTH PERIOD IN THE OKLAHOMA CITY AREA By David A. Hilton, Vera Huckel, Roy Steiner, and Domenic J. Maglieri Langley Research Center ### SUMMARY 13085 Measurements of sonic-boom ground overpressures have been made over a period of several months and for several flights each day. Data were obtained both inside and outside of buildings at locations on the ground track and at distances from the ground track of about 5 and 10 miles. Statistical analyses have been performed for both the overpressure and impulse data. The measured sonic-boom signatures were noted to vary widely both in peak amplitude and in wave shape because of atmospheric dynamic effects. The highest overpressure values were associated with waves having short duration peaks whereas low overpressure values were associated with rounded-off waves resembling sine waves. The variations of the overpressures and impulses may be represented over the significant range by log normal distributions, the overpressures having a markedly wider range of variations than the impulses. Measurements at lateral distances of 5 or more miles indicated wider ranges of variations than similar measurements on the ground track. For the same values of overpressure outside of a building, the inside pressure values were greater for exposures of longer wave length but did not vary appreciably for marked differences in wave shape for a given wave length. Suth ### INTRODUCTION The effects of sonic booms are an important consideration in the overland operation of supersonic aircraft. Of particular significance in the operation of proposed supersonic transports is the reaction of communities to sonic-boom exposures from repeated flights. Only a limited amount of information relative to this repeated exposure problem is available. This fact has led to the Oklahoma City experiments sponsored by the Federal Aviation Agency and participated in by other agencies and organizations, the NASA being responsible for the measurement of sonic-boom exposures in the test area. The material of this paper is thus primarily concerned with these latter measurements. In addition to describing the sonic-boom exposure of the community, the data illustrate some of the effects of the atmosphere during sonic-boom propagation. In previous experiments, some variations of wave shape and overpressure values were found to exist and were ascribed to atmospheric effects. (See ref. 1.) These effects were noted to be related to conditions of the atmosphere near the earth's surface. Such results were obtained during a series of studies that were rather limited both in terms of number of flights and time duration. The Oklahoma City experiments have provided the opportunity to evaluate possible effects on the sonic-boom signatures of the atmosphere and weather for an extended period of time and for a relatively large number of flights; however, only a partial analysis has been made to date. The purpose of this paper is to document the sonic-boom pressure exposures during these experiments and, in particular, at three measuring stations for about 1225 flights in the time period February 3, 1964 to July 30, 1964. Data are tabulated for each flight so that they may be correlated with information generated by other organizations participating in this program. Included are analyses of some specific sets of data such as categorizations of waveforms and statistical breakdowns of overpressures and positive impulses. ### SYMBOLS A airplane cross-sectional area, sq ft A(t) nondimensional cross-sectional area A/l^2 at nondimensionalized station t = x/l B equivalent cross-sectional area due to lift at airplane station x given by B = $\frac{\beta}{2q} \int_0^x F_L$ ' dx C_I, lift coefficient F_{L} ' lifting force per unit length along airplane longitudinal axis h airplane flight altitude, ft Io impulse of sonic-boom ground-pressure signature Kr ground reflection factor l length of airplane, ft M Mach number p reference pressure, lb/sq ft Δp incremental pressure above ambient pressure due to flow field of airplane, lb/sq ft Δp_1 peak positive inside overpressure, lb/sq ft Δp_{O} pressure rise across shock wave at ground level, lb/sq ft q dynamic pressure, lb/sq ft S wing planform area, sq ft t nondimensionalized distance along longitudinal axis from airplane Δt_o time duration of phase of sonic-boom ground-pressure signature x cylindrical coordinate measured along body axis, ft $$\beta = \sqrt{M^2 - 1}$$ ### Subscripts: calc calculated max maximum meas measured pos positive The following symbols and definitions are used in tables I to XXI to denote weather conditions: ### Surface winds: First number in column is direction (true north) from which wind is blowing; second number in column is wind velocity in knots. ### Cloud cover: \cup clear \bigcirc scattered \bigcirc broken \oplus overcast X obscuration ### Precipitation: A minus sign before type of precipitation indicates that the precipitation was light; otherwise, precipitation was moderate. sleet Ε F fog ground fog GF Η haze L drizzle rain R rain showers RW S snow thunderstorm \mathbf{T} ZR freezing rain ### APPARATUS AND METHODS ### Test Conditions Test flights for which data are presented were made in the Greater Oklahoma City area along the track indicated in figure 1. This general area has an elevation of about 1,700 feet above sea level and includes a population of about 750,000 people in its urban, suburban, and rural regions. Several flights per day were made starting in February 1964 and continuing through July 1964. ### Test Airplanes Photographs of the airplanes of the types used in these tests are shown in figure 2. Airplane A has an overall length of 54.5 feet and a gross weight varying from 14,000 to 19,000 pounds. Airplane B has an overall length of 67.5 feet and a gross weight varying from 34,000 to 45,000 pounds. Airplane C has an overall length of about 71 feet and a gross weight of about 35,000 pounds. Airplane D has an overall length of 96.8 feet and a gross weight varying from 100,000 to 116,000 pounds. Aircraft of these types have been used in other sonic-boom flight-test programs and some details such as area distributions, fineness ratios, and shape factors are given in references 1 and 2. The airplanes were maintained and operated by U.S. Air Force personnel. ### Aircraft Operations and Positioning The aircraft were operated in the altitude range 21,000 to 50,000 feet and the Mach number range 1.2 to 2.0. The airplanes in all cases were positioned over the test area and along the prescribed ground track (see fig. 1) by means of ground-control procedures with the aid of radar tracking. The ground controller was located in Fort Worth, Texas, and the radar antenna was located within the Oklahoma City area. (See fig. 1.) Most of the flights were made on a heading of 049° magnetic. On February 19 and 29, the flights were made on a heading of 229° magnetic; on April 28, the heading for flights 1 to 4 was 310° magnetic, and flights 5 to 8 were on 130° magnetic; on April 29, flights 1 to 4 were made on a heading of 170° magnetic, and flights 5 to 8 on 350° magnetic. Flights on March 7 were conducted on the 049° magnetic heading, but the airplane was displaced 8 miles to the north of the original track. Radar plotting-board overlays were obtained for all flights, and the data were used to provide information on aircraft plan position and ground velocity. Altitude was obtained from a Ground Control Intercept station located in Oklahoma City. All altitude values listed in the data tables are separation distances, that is, the actual distance from the airplane to the ground surface. Each aircraft was directed on the flight track such that the desired Mach number and altitude conditions were reached when the aircraft was in the vicinity of Minco, Oklahoma and were maintained to the general vicinity of Arcadia, Oklahoma. When these procedures were used, the sonic booms observed at the measuring stations indicated in figure 1 were associated with steady-level flight conditions of the aircraft. In some cases the acceleration portion was extended beyond the point shown in figure 1 to permit two passes to be made during one flight. For some of these latter flights, acceleration effects as indicated by a double-boom disturbance (see ref. 3) were noted to exist in the Oklahoma City test area. Only the first to arrive pressure signature, which in all cases was the most intense, has been included in the data tabulations. ### Atmospheric Soundings Rawinsonde observations from the U.S. Air Force weather facility located at Will Rogers Field, Oklahoma (see fig. 1) were taken within 1 hour of the times of all of the supersonic flights. Measured values of temperature and pressure, along with the calculated speed-of-sound and humidity values and wind velocity and direction values, were provided up to at least the airplane test altitude. In addition to the four rawinsonde observations which were obtained during each day, surface measurements of temperatures, winds, and so forth were obtained along with information relayed by the pilots during
their ascent to altitude and during the actual supersonic run. The type of information obtained from the pilots included indications of turbulence, cloud cover, and precipitation. ### Pressure Instrumentation The main components of the measurement systems used for sonic-boom pressures are the same as those described in more detail in reference 1. Each channel of the system as used in the experiments consisted of a specially modified microphone, tuning unit, d-c amplifier, and oscillograph recorder. The usable frequency range was from 0.1 to 5,000 cycles per second, and this range applies to all the data presented herein. The microphones have a dynamic range from about 70 to about 150 dB. They were field-calibrated statically before each test by means of a pressure bellows and a sensitive manometer. Prior to field installation, frequency-response curves were obtained for all microphones. Sonic-boom pressure measurements were made both inside and outside the three test buildings. Each outside microphone was shock mounted at ground level in the surface of a plywood reflecting board, as shown in figure 9 of reference 1. Wind screens designed so as not to affect the pressure measurements were used at all times. When measurements were made during precipitation, a thin plastic cover was draped loosely over the wind screens. For the inside measurements, each microphone was shock mounted at approximately 5 feet from the floor level near the center of the room. These setups were used to make inside and outside measurements at each of the three measuring stations noted in figure 1. In order to obtain information on the sizes of areas affected by given levels of ground overpressure, a special multiple array of microphones was used for simultaneous measurements at selected locations. Simultaneous recordings from each of the 5 microphones were made for several flights for microphone separation distances from 50 to 200 feet in straight lines parallel to and perpendicular to the flight track of the aircraft. These data were taken in open areas at locations near the ground track and also at lateral distances of about 8 miles on either side of it. ### Sonic-Boom Calculations Sonic-boom calculations are included in this paper only for airplanes A and B since these airplanes are the ones for which sufficient data were obtained for statistical analyses. The method of performing the calculations is the same as that outlined in the appendix of reference 1. Both volume and lift were considered and in the manner illustrated in figure 3. The assumed volume distributions and lift distributions for each airplane are shown in figures 3(a) and 3(b), respectively. From the basic lift and volume distributions, the sonicboom characteristics for each aircraft are determined by machine computing procedures in parametric form as indicated in figure 3(c). In the calculations for signature wave lengths which are required in determining the impulse functions, it was assumed that far-field conditions existed and that lift effects could be neglected. In the calculations of wave lengths, the method of reference 4 was used and the duration of the positive phase of the wave was assumed to be equal to that of the negative phase. ### RESULTS AND DISCUSSION ### Wave Shapes The type of experimental data obtained in the measurements of the present studies is illustrated in figure 4, which shows sample outside and inside sonicboom pressure signatures. The outside pressure signature is of the N-wave type, whereas the inside pressure signature has the general appearance of a damped sine wave. The peak overpressure values in either case are defined as the maximum positive deviation from local atmospheric pressure, as indicated in the figure. From a study of the data obtained, it was found that the outside pressure traces varied markedly in character such that it was useful to categorize them as indicated in figure 5. The characteristic wave shapes are presented on the left-hand side of the figure, and word descriptions, on the right-hand side. In cases where wave shapes did not fall naturally into one of the categories illustrated, a two-letter designation was assigned; for instance, a type "NP" was judged to be intermediate between type "N" and type "P." Also shown on the figure are definitions of such quantities as positive impulse I_0 and the duration of the positive phase of the wave Δt_0 , which are listed in the main data tables along with peak overpressure and wave-shape categories. ### Tabulations of Data The measured data as determined from time-history records such as those of figures 4 and 5 are listed in tables I to XXI. The data in each table are listed chronologically for each aircraft and altitude combination. In addition to the sonic-boom signature data for the three measurement stations, some associated weather and aircraft operating condition information is included. Where there are no entries in the table, either the data do not exist or could not be properly interpreted. For the convenience of the reader, and to indicate sample size, table XXII has been prepared to include the number of data records at each measuring station for various flight conditions, along with the number of the appropriate table (see tables I to XXI) in which the data are included. It is obvious from an inspection of table XXII that a larger number of flights were conducted for some test conditions than for others, and thus these results are of greater statistical significance. ### Variations for a Series of Flights The data of tables I to XXI have been studied in detail to determine the manner in which the peak overpressure and impulse values vary. The results of these studies are included in figures 6 to 9. In these figures the data have been plotted as relative cumulative frequency distributions and thus, on the ordinate scales, give the probability of equaling or exceeding the given values of the abscissas. The data of figures 5, 6, and 7 illustrate the variation of the peak overpressures for the entire range of flight conditions for airplanes A and B at each of three measuring stations. In figures 8 and 9 the variations of the impulse values for these two aircraft are shown by means of similar plots. All the data have been plotted on log normal paper and straight lines have been faired through the data points as an aid in interpretation. For this type of presentation, the data points would all fall on a straight line if the logarithms of the data fitted a normal distribution. In each case the opportunity is taken to plot on the abscissa scale the ratio of measured to calculated values of either overpressure or impulse. The measured value of overpressure or positive impulse for any particular flight may be obtained from the appropriate column of tables I to XXI. The calculated values, on the other hand, may be obtained from table XXII. Also shown in each figure is an insert sketch (histogram) showing probability of occurrence of various values of the abscissa quantity. Several observations can be made from the data of figure 6. Let us first focus our attention on the data of figure 6(a) which relates to the measuring station on the ground track. The data seem to follow a log normal distribution with the exception of the low-valued points and this is a rather general result of the experiments. The median value of the pressure ratio for this case is noticeably less than 1. In fact, about 80 percent of the measurements for this particular condition were lower in amplitude than would be predicted and only about 20 percent equaled or exceeded the predicted value. It can also be seen that there is a probability of about 1 percent (0.01) that the measured value will equal or exceed the predicted value by 50 percent. Figures 6(b) and 6(c) include similar data but for locations about 5 or 10 miles, respectively, off the track. It can be seen that as the distance from the track is increased, the variation in amplitude tends to be greater and the median value is nearer unity than for the location on the track. It is not known whether these differences are due to sampling variations, a longer ray path in the presence of turbulence, a large-scale temperature anomaly, a shifting of the exposure pattern because of cross winds (see ref. 5), or some combination of these phenomena. There is also a trend toward greater deviations from the log normal distribution curve in the low-amplitude range for greater lateral distances. The data show about a 1-percent probability of equaling or exceeding measured values which are 2 to $2\frac{1}{2}$ times the predicted values. This result should not be interpreted to mean that the actual overpressures are necessarily higher than for the on-the-track location since the off-the-track calculated values are, of course, generally lower (see table XXII). Similar data for airplane B are shown in figure 7. It can be seen that the same general trends of the data exist. The median values and the range of pressure-ratio values are noted, however, to be higher for airplane B. It is believed that if the aircraft speed, weight, and altitude were held absolutely constant and the atmospheric conditions constant, the overpressure values would be equal for all flights. The overpressure values from one flight to another are not constant, but rather vary in amplitude over a considerable range. These variations may be due to such factors as small variations in aircraft flight conditions, small variations due to measuring technique and instrument inaccuracies, and variations due to the weather. For the data illustrated, the weather effects are judged to be dominant. The positive impulse functions have been determined for the experiments of figures 6 and 7 and are presented, respectively, in figures 8 and 9. Log normal plots are presented and the data are coded in the same way as for figures 6 and 7. The variations in the impulse functions are noted to be
similar in nature to those for the overpressures; however, the range of values is markedly less. It can be seen from figure 8 that the median value is generally less than the predicted value, whereas the reverse is true in figure 9. This result is not presently understood; however, the use of the far-field theory of reference 4 may result in overestimating calculated impulse values for airplane A and in underestimating them for airplane B. ### Variations for a Given Flight The data presented in tables I to XXI and in figures 6 and 7 indicate the type of variations of the pressure exposures at discrete measuring points over a period of time during which atmospheric changes occurred. In order to provide some information relative to the variations occurring in specific areas on the ground as a result of a single flight, experiments were performed with a special microphone array in which the individual microphones were accurately spaced and oriented relative to the flight track. Sample data obtained in this manner are presented in figures 10 and 11. The data of figure 10 represent an overall calibration of the individual microphones in the array. They were placed within a few inches of each other for one of the flights in order to check for repeatability and to determine the amount of variation inherent in the field use of these instruments. Tracings were made of the pressure-time history records and are presented in the figure. It is obvious that the wave shapes are nearly identical, since the systems are closely matched in frequency response and are closely grouped to minimize atmospheric effects. As illustrated in figure 10, the variation in the results from the average value which may be ascribed to instrument differences and calibration and reading errors is noted to be less than about ±7 percent. For the experiment the sensitive diaphragm element of the microphone was located about 6 inches above and parallel to the reflecting surface, and this location accounts for the small steps in the steeply rising portions of the waves at both the initial and final compressions. The same microphone positioning scheme was used to obtain the data of figure 11. In figure 11 are presented tracings of the measured waveforms from the accurately calibrated and oriented array of matched microphones. These data illustrate the variations of waveforms obtained for given flights for which the aircraft operating conditions are essentially constant. The waveforms are presented in the proper time sequence and are directly comparable in amplitude. All data of the figure were recorded for microphone separation distances of 200 feet. Data are presented for flights at times 2 hours apart on the same day. It can be seen that a wide variation in wave shape occurred even over a distance on the ground of a few hundred feet, and that the variations were different for the two flights. The widest variation occurred for the data of figure 11(a), where a definite progression was noted from a highly peaked wave of relatively large overpressure at the first measuring point to a rounded-off wave of relatively low overpressure. The data of figure 11(b) also suggest a definite progression of events. A study of a series of recordings such as these and others of a similar nature taken during the experiments suggests a rising and falling of the peak overpressure values along with corresponding wave shape changes as a function of distance along the ground. The peak overpressure value rises and falls as a function of distance in much the same manner as the surface level of the ocean in the presence of waves. Although not shown in the figure, significant differences in wave shape were measured at separation distances as small as 50 feet. Such variations as these, which have also been observed on other occasions (see ref. 1), are believed to result from temperature and velocity anomalies in the atmosphere, particularly in the lower layers. ### Lateral-Spread Patterns In order to summarize the results pertaining to the lateral-spread patterns in the test area, the comparable pressure data are plotted in figure 12 as a function of distance from the ground track of the aircraft. Data are included for eight flights during a particular day and include measurements made at three permanent measurement stations and with the use of a mobile recording station at an 8-mile distance on the opposite side of the track. For each of the permanent recording stations, one data point was obtained for each flight, whereas five data points were recorded for each flight at the mobile recording station. There is noted to be some scatter in the overpressure values at all measuring stations. The most scatter and the highest overpressures occur at station 3 for the operations on this particular day. From an inspection of similar data for operation on other days, it was noted that the largest scatter and highest overpressures do not always occur at station 3, but also might occur at any of the other stations. Also shown in the figure is a calculated curve of nominal overpressure values for these flight conditions along with the calculated cutoff points for atmospheric refraction, a zero wind condition being assumed. (See ref. 6.) For the data shown in the figure, there was a prevailing wind generally from left to right (northwest to southeast). Such a wind occurred on most days of operation. There is a possibility of a shifting of the whole pressure pattern, generally to the right, for such wind conditions. Such a shift of the pressure pattern is judged to have occurred on some occasions when waveforms of type C (see fig. 5) were measured at the upwind measuring station. Such waveforms are consistently measured near the edge of the pressure pattern. Another result which suggests some shifting of the pressure pattern is the fact that in many cases, as for instance those of figure 12, measured overpressures at station 3 were as high as or higher than those at station 1. ### Correlation Between Inside and Outside Measurements The measured data have been analyzed for the purpose of establishing some correlation, if possible, between the inside measurements and the outside measurements. There is reason to believe that the inside microphone may give an indication of the overall dynamic response of the building since it integrates all the pressure fluctuations in its vicinity because of the motions of the building components. Such a measurement might, therefore, be significant with regard to judgments of acceptability by indoor observers. One of the findings of these studies is illustrated in figure 13. In the upper part of the figure are shown two markedly different waveforms as measured for airplane A at the outside microphone measuring location of station 1. Even though the overpressure values and the associated wave shapes differ, the wave lengths are nearly the same. The bottom traces are the corresponding pressure-time histories measured at the inside microphone location of the test building. The most obvious result is that the inside pressure traces are very nearly identical despite the marked differences in the outside pressure traces. The results of figure 13, of course, apply to a particular aircraft. Different results are obtained, as illustrated in figure 14, for different aircraft. In the top part of the figure are the outside pressure traces for aircraft A and D, and in the lower part of the figure are the corresponding inside pressure traces. Although the outside pressure traces differ in some detail, the major difference is in the wave length. The inside pressure traces are seen to differ markedly in character, the trace with the fluctuations of lower frequency being associated with the outside wave of longer duration or wave length. These results suggest that the peak pressure alone is not the dominant factor in building response, but that a combination of peak pressure and time duration (impulse) may be important. Figure 15 contains a presentation of the comparable inside and outside measurements to illustrate a possible correlation of these data. Inside peak overpressures are plotted as a function of positive impulse values as determined from outside pressure measurements and as listed in tables I to XXI. The large number of data points for both aircraft A and B are represented by the hatched areas. The inside pressure values are noted to increase generally as the outside impulse values increase and thus tend to be higher for the larger aircraft. ### Inside Acoustic Measurements In figures 13 and 14, some examples are shown of the nature of the inside pressure signatures for various flight conditions. In general, the onset of pressure is slow, the peak value is less, and the duration is markedly longer than for the corresponding outside signature. Since the primary building vibration modes are the dominant contributors, the resulting pressure time history has a large low-frequency content, some of which is subaudible. In order to determine the contribution of the high-frequency components, some recordings were made for the range 100 to 5000 cps. The peak noise levels in this latter frequency range did not exceed about 90 dB. The relative importance in the reaction problem of the low-frequency or subaudible components and the high-frequency acoustic components remain to be evaluated. ### CONCLUSIONS Analyses of sonic-boom pressure measurements made in the Oklahoma City area over a 6-month period and for varying atmospheric conditions and flight conditions indicate the following conclusions: - 1. Wide variations in ground pressure signature were observed with corresponding wide variations in the peak overpressure and to a lesser degree, variations in the positive impulse function. - 2. Variations of overpressure and impulse may be represented by a log normal distribution (normal distribution of their logarithms) over the significant ranges. - 3. One percent of the measured
overpressures equaled or exceeded the predicted values by a factor of about 1.5 to 3.0 depending on the distance relative to the ground track; the larger factor was associated with the larger distances and with the lower predicted value. - 4. One percent of the measured positive impulse values equaled or exceeded the predicted values by a factor of about 1.2 and 2.0 depending on the distance from the ground track, the large factor being associated with the larger distances and with the lower predicted value. - 5. Measurements at several points for a given flight show also a variation in wave shape as a function of distance in the direction of flight. An orderly progression of wave shape is suggested by the data from a highly peaked wave at one point to a rounded-off wave at another and vice versa. - 6. Measured pressure signatures inside of a building were lower in amplitude and longer in duration than the corresponding outside pressure signatures and were dominated by frequency components corresponding to the principal vibration modes of the building. - 7. The levels of the pressures inside of a building in the range of frequencies 100 to 5000 cps are about 30 dB lower than those in the range 0.1 to 5000 cps; thus, an inside observer is subjected to strong pressure variations in the subaudible range and relatively weak pressure variations in the audible range. - 8. For equal outside peak overpressures the peak pressures inside a residential-type structure were greater for a longer wave length. - 9. Inside peak pressures were found to correlate well with vibration in the positive impulse function of the outside pressure signature. For a given wave length they did not vary appreciably for marked variations in the wave shape. Langley Research Center, National Aeronautics and Space Administration, Langley Station, Hampton, Va., October 14, 1964. ### REFERENCES - 1. Hubbard, Harvey H.; Maglieri, Domenic J.; Huckel, Vera; and Hilton, David A. (With appendix by Harry W. Carlson): Ground Measurements of Sonic-Boom Pressures for the Altitude Range of 10,000 to 75,000 Feet. NASA TR R-198, 1964. (Supersedes NASA TM X-633.) - 2. Maglieri, Domenic J.; Parrott, Tony L.; Hilton, David A.; and Copeland, William L.: Lateral-Spread Sonic-Boom Ground-Pressure Measurements From Airplanes at Altitudes to 75,000 Feet and at Mach Numbers to 2.0. NASA TN D-2021, 1963. - 3. Maglieri, Domenic J.; and Lansing, Donald L.: Sonic Booms From Aircraft in Maneuvers. NASA TN D-2370, 1964. - 4. Whitham, G. B.: The Behaviour of Supersonic Flow Past a Body of Revolution, Far From the Axis. Proc. Roy. Soc. (London), ser. A, vol. 201, no. 1064, Mar. 7, 1950, pp. 89-109. - 5. Lina, Lindsay J.; Maglieri, Domenic J.; and Hubbard, Harvey H.: Supersonic Transports Noise Aspects With Emphasis on Sonic Boom. 2nd Supersonic Transports (Proceedings). S.M.F. Fund Paper No. FF-26, Inst. Aero. Sci., Jan. 25-27, 1960, pp. 2-12. - 6. Randall, D. G.: Methods for Estimating Distributions and Intensities of Sonic Bangs. R. & M. No. 3113, British A.R.C., 1959. TABLE I.- SUMMARY OF SCRIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A FOR AN ALITITUDE RANGE FROM 36,000 TO 41,000 FEET | | | Wave | | z ž ž | | 4 E E | FEF | 4 g 4 | | R W D D | | OTGRAGI!!G | |------------------------------------|-----------|--|-------------|---|-------------|--|--|--|-------------|---|-------------|---| | | | Io,
pos.,
ll-sec/sq ft | 1 | 0.0235
.0255
.0194 | | 0.0197
.0125
.0169 | .0207 | .0185 | | 0.0100
.0150
.0147
.0180 | | 0.0118
0.0151
0.0151
0.0184
0.0167
0.0167
0.0161 | | | Station | Δto,
pos.,
sec | | 0.042.
0.42.
0.42. | | 0.046
.052
.046 | .055 | .056 | | .055 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | | Ś | Δp ₁ ,
1b/sq ft | | | | 8.88 | 1888 | ន់
ន់
ន់
នំ | | | | ទំទំស់ន់ន់ន់ន់ផ្តាល់ន | | | | Wave Apo,
shape lb/sq ft | | 1.0 | | | 446 | 85 14 | | 143754
143754 | |
8.0.1
8.0.1
8.0.2
8.0.1
8.0.2
8.0.2
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8.0.3
8
8.0.3
8
8.0.3
8
8.0.3
8
8
8.0.3
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | | ta. | | Wave
shape | | # # # | | REN | er er er | E E E E | | LZZZZ | | N N N N N N N N N N N N N N N N N N N | | Sonic-boom pressure signature data | 5 | Io,
pos.,
lb-sec/sq ft | | 0.0248
.0243
.0245 | | 0.0283
.0151
.0248 | 2820
2820
2800
2800 | .0203
.0203
7.120. | | 0.0285
4710.
2825. | | 0.0186
0.0210
0.0226
0.0226
0.0220
0.0220
0.0220 | | ssure (| Station | Δto,
pos., | | 0.045
.040
.036 | | 0.052
.050
.050 | <u> </u> | ¥.05.05.05.05.05.05.05.05.05.05.05.05.05. | | 0.0
0.0
0.4
0.4
0.4
0.4
0.4 | | 0
0,444446944 | | -boom pre | S. | Δp ₁ ,
lb/sq ft | | | | 0.30 | 54.
12.
12. | <u>ૡૻ</u> ૪ૺ¥ૢૹ૽ | | 13.4884 | | 18.824.84.82 | | Sonic | | Wave Apo,
shape 1b/sq ft | | 0.91
1.04
1.17 | | 0.83 | ¢.&&& | ,64¢8 | | 9.68.4 | | 1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1.0.0.1
1. | | | | Wave
shape | eet | NR
RN R | eet | FEE | £ 5 2 5 | ## # | reet | R R R R P P | feet | E G G N N M G M M | | | | Io,
pos.,
lb-sec/sq ft | 41,000 feet | 0.0247
.0201
.0189 | 38,000 feet | 0.0255 | 080.
089.
789.
749. | .0241
.0254 | 37,000 feet | 0.0287
.0277
.0243
.0285
.450. | 36,000 feet | 0.0176
.0171
.0174
.0274
.0263
.0264
.0264
.0265
.0265
.0265 | | | Station 1 | Δto,
pos., | | 0
40
40
40
40
40
40
40
40
40
40
40
40
40 | | 20.00 | 8.4.4.4.
1.4.1.4.4.4.4.4.4.4.4.4.4.4.4.4. | \$ 9
129
120 | | 86.69444 | |
00.00
44.00
44.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00 | | | ts. | Δp ₁ ,
lb/sq ft | | | | %.°°. | & <u>4</u> 7 3 4 | ± 8, 8, | | \$ 55 CL \$2.73 \$2 | | 883 885 885 835 | | | | Δp _o ,
lb/sq ft | | 1.07
.77. | | 8.1.8 | 67:
18:1
18:4 | 88 8 | | 7.0
7.3
7.3
8.1
8.2
8.3
8.3 | | 0.5.0
71.1.7
71.0.1
79.0.1
79.0.1
69.1
69.1 | | | | Precip-
itation | | None
None
None | | None
None
None | None
None
None | None
None
None | | -R, GF, -E
-R, F
-S, F
-S
None
None | | -R, F
None
None
None
None
None
None | | ther | | Cloud | | O # = | | | | 9999 | | 9 = = = 0 = | | 0 00000000000000000000000000000000000 | | Weath | | Surface
winds,
knots | | 050/7
050/8
050/8 | | 290/18
280/18
290/18 | 250/15
250/14
250/17
250/17 | 250/6
250/6
20/10
20/10 | | 030/8
360/13
320/15
360/14
280/8
280/8 | | 360/15
360/15
360/15
360/17
270/10
300/14
280/25
300/25
300/25 | | | | Surface Surface
temp., winds,
or knots | | 284 | | 848 | 52.52 | ススなない | | ***** | | 5277777778
5277777777 | | Suc | | Mach | | 000 | | | | i i i i i i | | uui ii | | | | mditic | | Time | | 888 | | 1236
1530
1805 | 1029
1255
1255 | 1521
871
87
87
87
87 | | 10.89
15.32
17.74
10.89 | ` | 1359
1032
1259
1529
1529
1026
1300
1527
1527 | | Operating conditions | | Flight | | 2/565
1/565
1/565 | | 1 | | 2
2
2
2
3
3
4
3
4
4
5
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | | 1,12 | | 2/12
2/65
3/15
3/15
4/17
5/18
6/19 | | Operat | | Date | | \$-\$-4
-4-8
-4-8
-4-4 | | 2-7-6-
2-7-6-7-6-7-6-7-6-7-6-7-6-7-6-7-6-7-6-7- | 9999
4444 | 7 4 4 4 4
10 4 4 4
10 4 4 4 | | 555555
-1-6-2-1-
-1-6-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Table II.- summary of sonic-boom data for various flights of airplane a for an allitude range from 33,000 to 35,000 feet | | Т | Wave | | EN EN T T R R | WNNN H | THE SECTION OF SE | P- CK CK | \neg | | | Δ, | |------------------------------------|-----------|--|-------------|--|--
--|---|----------------------|---------|--------|-------------------------------| | | | Wave
shape | , | | | | ZZZGOPZ | - | Δ, | | d N | | | | Io,
pos.,
lb-sec/sq | | 0.0160
.0161
.0157
.0157
.0169
.0160 | .0108
.020.
.020.
.0153
.0154 | .0223
.0145
.0146
.0175
.0209
.0094 | .0204
.0140
.0140
.0140
.0205
.020
.0237 | | 0.0199 | | 0.0233
.0173
.0194 | | | Station A | Δto,
pos.,
sec | | 0.08
8.00.15
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1.00.14
1 | 9 9 9 9 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 | 44648888
44648888 | 949
950
950
950
140
140 | | 0.047 | | 0.030
740.
050. | | i | Ċ | Δp _o , Δp ₁ ,
lb/sq ft lb/sq ft | | ga ga ga i i i | 388094 8 | 8 4 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | :
6달 달남 | | 0.27 | | 0.37
¥g.
289 | | | | Δp _o ,
lb/sq ft | | 27-
26-
26-
26-
26-
26-
26-
26-
26-
26-
26 | £8 4 1 1 5 1 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 1 5 5 5 1 5 5 5 1 5 | 1.03
.99
.75
.75
.75 | 71.1
05.
87.1
68.
75.1 | | 1.32 | *** | 1.73 | | 8 | | Wave | | AN N N N N N N N N N N N N N N N N N N | RENERRE | N M M M M M M | RYNNNN | | MP | | N A N | | Sonic-boom pressure signature data | 5 | Io,
pos.,
lb-sec/sq ft | | 0.0221
.0267
.0250
.0220
.0220 | .0145
.0263
.0271
.0265
.0226
.0197 | . 0248
. 0227
. 0252
 | .0236
.0269
.0243
.0243
.0243 | | 0.0274 | | 0.0252
.0238
.0241 | | ssure 6 | Station 3 | Δto,
pos., | | 9.9.9.9.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | 89999988
19658 | \$ 2 4 2 4 | 6.99.99.99.99.99.99.99.99.99.99.99.99.99 | | 0.047 | | 0.041
.039
.042 | | -boom pre | St | Δp ₁ ,
lb/sq ft | | ,
इ.सं.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ.इ | ዸ፞፠፞፠፞፠፞ዸ፞፞፞፞፞፠ | \$ <i>£</i> £ <i>£</i> \$£\$ | £48424 | | 0.42 | | 4₹.0
04. | | Sonic | | ∆p₀,
lb/sq ft | | 48.28.24. | 86. 1
86. 1
88. 1
88. 1 | 1.04
1.01
.97
.88
1.83 | .70
1.35
1.03
1.13
1.13 | | .3 | | 1.13
1.97
1.18 | | | | Wave | feet | M M M M M M | R R R R R R R R R R R R R R R R R R R | H H H H H H H | R N R N R N R N R N R N R N R N R N R N | 34,000 feet | pc, | feet (| P
NP
N | | | | Lo,
pos.,
lb-sec/sq ft | 35,000 feet | 0.0319
.0257
.0284
.0317
.0261
.0162 | .0224
.0250
.0250
.0250
.0251 | .0304
.0247
.0228
.0203
.0240 | .0234
.0345
.0363
.0356
.0255
.0215 | 3 [‡] , 000 | 0.0278 | 33,000 | 0.0234 | | | Station 1 | Δto,
pos., | | 944
944
944
944
966
966
966
966
966 | 848444
848444 | \$\$\$\$\$\$\$\$ | 1549.99.99.99.99.99.99.99.99.99.99.99.99.9 | | 0.046 | | 0.039
.044
.041 | | | St | ∆p ₁ ,
lb/sq ft | | o
& ಸುಹ್ರಬಳು
ಪ್ರಶ | <i>& & & & & & & & & &</i> | नें <u>चं</u> रूं इंट्रेड्ड्रं | <u> </u> | | 0.31 | | 54.0
88. | | | | ∆p _o ,
1b/sq ft | | 1.18
1.28
1.28
1.28
1.00
1.00
1.00 | 4828288 | 26.1
28.
26.
16.1 | .81
1.35
1.11
1.24
1.59
1.29 | | 6.0 | | 1.02 | | | | Cloud Precip-
cover itation | | None
None
None
None
None | None
None
None
None
None | None
None
None
None
None | None F None None None | | None | | None
None
None | | er | | cover | | ⊕0⊖0= ⊖ = | ⊕000±0± | 0 = 0 = 0 = = | ⊕ = = = ⊖ = ⊖ | | 0 | | 9 ⊖ = | | Weath | | Surface
winds,
knots | | 330/22
120/8
150/15
310/18
320/20 | 360/15
150/8
150/8
350/12
350/12
160/7 | 350/8
160/10
160/10
170/16
180/33 | 150/14
150/14
160/15
160/15
320/12
230/12 | | 200/25 | | 170/16
170/12
170/12 | | | | Surface
temp., | | 3848548 | 28 88 88 88 88 88 88 88 88 88 88 88 88 8 | 55 4 55 55
54 55 55 55 55 55 55 55 55 55 55 55 55 5 | 282486
2864 | | ₹ | | 27.52 | | suc | | Mach | | 444444 | | uuquuqu
veree | | | 8. | | 2.1 | | conditions | | Тіпе | | 13.59
13.59
13.59
13.59
13.59
13.59
13.59 | 1559
700
730
730
730
730
730
730 | 659
730
720
720
1320
1320 | 200
200
200
1,300
1,300
1,300
1,300 | | 7600 | | 588 | | | | Flight | | 7,17,68
7,7,79
7,88
7,88
7,88
7,88 | 7/106
1/115
2/116
1/123
2/124
1/131
2/132 | 1/139
2/140
1/164
2/165
3/166
1/170
8/11 | 1/178
2/179
3/180
3/180
1/271
1/271
1/563 | | 7/137 | | 4/167
3/269
4/270 | | Operating | | Date | | 2012-00-00-00-00-00-00-00-00-00-00-00-00-00 | \$ | \$ | 77777
9999999
9999999 | | 5-24-64 | | 2-29-64
3-16-64
3-16-64 | TABLE III.- SUMMAKY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE A ### FOR AN ALITITIDE OF 32,000 FEET | | | Wave | N M N N N N | AN NA N | RRRN | I I GA | THE TALL | AN H H H | N N N | N | |------------------------------------|-----------
--------------------------------------|---|--|--|-------------------------------------|---|--|-------------------------------|---------| | | 71 | Io,
pos.,
lb-sez/sq ft | 0.001
0192
0225
0210
0210 | .0182
.0190
.0174
.0235
.0198 | .c117
.0151
.0155 | .0185 | .0215
.0176
.0160
.0155
.0219
.0219
.0218 | .0141
.0173
.0141
.0128 | .0157
.0146
.0171 | .0188 | | | Station 1 | Δto,
pos.,
sec | 989998 | 2500
1000
1000
1000
1000
1000
1000
1000 | 88.
949.
1549. | £5. | 449
659
649
649
659
679
679 | 648
648
648
648 | .050 | .050 | | | St | ∆p ₁ ,
lb/sq ft | ខ្មែន់ខ្មែន | _{ន់} ់ន់ន់ន់ខ្ល | 01.
22.
31.
61. | 1888 | <i>¥र्ध्यक्ष</i> ४४४८ छ | . 25.
22.
21.
71. | ४
इंद्यं | .22 | | | | Wave Δp_o , shape $1b/sq$ ft | 0.73
1.03
1.03
1.03
1.03 | 13:8:8:8:9:9:9:9:9:9:9:9:9:9:9:9:9:9:9:9: | ¥.
77.
94. | 1.12 | | 74.
77.
84.
86. | 45.
55.
57. | .92 | | ta
ta | | Wave
shape | NP NP NP | NNKNN | 1111 | R R R R | N N N N N N N N N N N N N N N N N N N | NNNR | æ æ æ | Z | | Sonic-boom pressure signature data | | Io,
pos.,
b-sec/sq ft | 0.0229
.0269
.0258
.0247
.0248 | .0514
.0227
.0299
.0263
.0261 | | .0255
.0239
.0257
.0208 | .0502
.0208
.0203
.0135
.0190 | .0260
.0254
.0239
.0149 | .0228
.0249
.0195 | 4020° | | ssure | Station 3 | Δto,
pos.,
sec 1 | 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9. | 444446 | | 959
99
99
99
99
99 | 9.00.00.00.00.00.00.00.00.00.00.00.00.00 | 9.9.9.9.9.
0.4.1.8.0.0.0 | 49.9 | 040. | | -boom pre | ಹ | Δp ₁ ,
lb/sq ft | | <u> </u> | | <i></i> | £48.6 88 | หัช่ง
ช่อ | 8.8.8 | 86. | | Sonic | | Δp _o ,
lb/sq ft | 2.24
2.28
1.11
1.33 | | | .98
.98 | 1.18 | 1.35 | 0,8
9,8
9,8 | -92 | | | | Wave | N H H H H H | z Ezza | THE RE DA | RRE E | | FETER | 新新 | Ŗ | | | | Io,
pos.,
lb-sec/sq ft | 4520.0
4520.0
0120.
3720.
8620. | .0264
.0252
.0275
.0263 | .0199
.0191
.0175 | .02872
.02872
.02873 | 6250.
9620.
9620.
9630. | .0227
.0275
.0275
.0272 | .0331
.0325
.0325 | .0295 | | , | Station 1 | Ato,
pos., | 25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00 | 4 3 4 4 | 8999 | \$ \$ \$ \$ \$ | 9.9.9.9.9.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 84448 | 555
500 | .055 | | | <i>\$</i> | Δp ₁ ,
1b/sq ft | 14.0
54.
58.
58.
58. | # 4888 | <i>ब</i> ं धं शं शं | *5.8' | | ४४४थ४ | 8,8,8 | .33 | | | | ∆po,
lb/sq ft | 01.1
4.1
20.1
19.2 | 1.10
.97
1.12
1.19 | 84.
88.
89. | 81
1.02
1.12
1.23 | 8.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 4.1.1.4.8.2.8.2. | 1.15 | 1.32 | | | | Precip-
itation | None
None
None
None
None | None
None
None
None
None | None
None
L, F | None
None
None | None None None None None None | None
None
None | None
None
None | None | | ler | | Cloud | 90000 = | : = = 0 + = | ⊕ ⊕ ⊕ = | + = 0 = | ○===⊖⊕= | ⊕ = | 0 = = | = | | Weath | 9 | winds,
knots | 010/12
020/17
350/18
010/18
340/14 | 110/10
130/10
150/15
150/15
150/14
160/15 | 160/20
160/20
170/19
170/18 | 030/10
030/10
020/19
020/9 | 150/12
150/12
150/12
150/18
150/25
150/22 | 280/27
330/27
330/36
330/17 | 120/8
290/8
320/6 | 150/15 | | | 9 | temp., | 41
52
52
51
51
51 | 854758 | なななが | 523
84
8833 | 888827275 | አልቷ & & | ત્રજ્ઞ | 71 | | su | | Mach | 44444 | 444444 | 4444 | 24.4 | uuuuuuuu
vuuvuvuu |
raidid
recei | 2.1.1 | 1.5 | | ditio | | Time | 930
1326
1358
1602
1631 | 701
731
930
1338
1359 | 703
288
979
979 | 700
728
1559
1630 | 701
1003
11379
11379
11378
11578 | 721
731
1559
1559
1650 | 2282 | 730 | | ing cor | | Flight | 84/6/2 kg
2/2/2/8/8/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2 | 65/38
65/38
65/38 | 1/t3
2/t4
1/t6 | 1/47
2/48
7/53
8/54 | 1/54
1/57
1/53
1/60
1/60 | 1/65
2/65
5/67
6/64 | 2/70
3/71
4/72 | 2/78 | | Operating conditions | | Date | 2-10-6-
2-10-6-
2-10-6-
2-10-6-
2-10-6-
10-6- | 8-11-8-11-8-11-8-11-8-11-8-11-8-11-8-1 | 2-12-64
2-12-64
2-12-64
2-12-64 | 9-13-6
9-13-6
9-13-6 | \$ 55 55 55 55 55 55 55 55 55 55 55 55 55 | 2-15-8
2-15-8
2-15-8
2-15-8
2-15-8 | 2-16-64
2-16-64
2-16-64 | 2-17-64 | TABLE III.- SUMMARY OF SONIG-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A FOR AN ALITHUDE OF 32,000 FEET - Continued | | | Wave
shape | T EN EN EN | EZE E | я я <u>я</u> | 异丙基异异异 | N N STATE OF OUR OF STATE OF OUR OWN | M G G G E | A A A | |------------------------------------|---------|--|--|---|-------------------------------|---|--|---|---| | | 71 | Io,
pos.,
lb-sec/sq ft | 0.0192
.0135
.0167
.0141 | .0138
.0185
.0146
.0145
.0173 | .0106
.0106
.0199 | .0170
.0160
.0171
.0126 | .0159
.0215
.0215
.0231
.0133
.0183 | .0221
.0196
.0189
.0198
.0259 | .0184
.0150
.0181
.0187 | | | Station | Δto,
pos.,
sec | 0.047
.052
.053
.053 | 945
575
574
575
575
575
575
575
575
575
5 | \$ 55. | 060
062
067
067
067 | 46.66.66.66.66.66.66.66.66.66.66.66.66.6 | 946
970
970
970
970 | 349.
549.
549. | | | S | wave $\Delta p_{\rm O}$, $\Delta p_{\rm I}$, shape $1b/{\rm sq}$ ft $1b/{\rm sq}$ ft | ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ.ઇ | i i i i i si si si | si.
71. | i8;¥;;;; | <i>ង់ខ្ពស់ខ្</i> ខំខ្ពស់ដ | <i>หล่งห</i> ล่ม | 4ં લં શંહ્ય | | | | Δpο,
lb/sq ft | 51.1
87.
18. | 855.
86.
86.
86.
87. | .37
.63 | 44.45.
54. 55. 54. 64. | | 19.00.1
1.00
1.00
1.00
1.00
1.00
1.00
1. | 4.
1.1.1
88. | | 85 | | wave
враре | S N K K | NNNOOO | N N N | T T K T T K | NNKKKKK | N N N N N N N N N N N N N N N N N N N | г г г г | | Sonic-boom pressure signature data | 2 | Io,
pos.,
lb-sec/sq ft | 0.0230
.0177
.0197
.0169 | .0187
.0224
.0181
.0253
.0207 | .0224
.0200
.0218 | .0293
.0207
.0285
.0225
.0313 | 0.094
0.0272
0.0272
0.445
0.450
0.013 | .0308
.0251
.0233
.0233 | 4620. | | ssure | Station | Δto,
pos., | 0.036
.041
.047
.053 | 40999 | 3.4.2 | 84.85.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84.85
84
84
84
84
84
84
84
84
84
84
84
84
84 | \$\$\$\$\$\$\$\$\$
01000000000000000000000000000 | 233884 | 9.56. | | -boom pre | St | Δp1,
lb/sq ft | ****** | ४
४
४
४
४
४
४ | <i>ķiiii</i> | 3 <i>44.</i> 483 | <u>v</u> vatvvvie | 3.8.8.8.8.8 | रुंदंदं | | Sonic | | Δp _o ,
lb/sq ft | 1.31
1.87
1.75 | 5.
19.1
19.1
19.1
19.0
1 | 1.5% | 488488 | 1.00
1.19
1.19
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30 | 3.11.24
1.06
1.06
1.06
1.06 | 1.33 | | | | wave
shape | ST S | N N N N N N N N N N N N N N N N N N N | K K K | HHHHHH | N E E E E E E E | NNNE | g g g | | | 1 | Io,
pos.,
lb-sec/sq ft | 0,027.
1,750.
1,650. |
.0327
.0263
.0256
.0256
.0242 | .0252
.0314
.0352 | .0273
.0296
.0269
.0269
.0269 | 0316
0308
0242
0301
0345
0279 | .0285
.0366
.0323
.0261 | 5450.
 | | | Station | | 0.046
0.047
0.42
0.42
0.48 | \$\$\$
\$\$\$
\$\$\$
\$\$\$
\$\$\$ | 949. | 884888
884888 | \$\$\$\$6\$66 | 9.50
9.50
9.40
9.40
9.40
9.40 | 4 19.9 | | | St | Δp ₁ , Δto,
lb/sq ft sec | 15.0
55.
75. | ÷ <i>2.8.2.8.2</i> | &' <u>\</u> | ជម្ពស់ដង់ស | 014 4 6 4 4 4 8 6 4 4 4 8 8 8 8 8 8 8 8 8 | 5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5 | ¥ £ £ \$ | | | | ΔΨο,
lb/sq ft | 1.37
1.09
1.33 | 1.32
1.70
1.27
1.21
1.33 | 1.03 | 1.18
1.17
1.17
28. | 1.1.1.1.1.1.1.2.88. | 1.13 | 1.40
1.16
1.31
1.06 | | | | Cloud Precip-
cover itation | None
-R
-R, F | None
None
None
None
None | None
None
None | None
None
S
None
None | None
None
None
None
None
None | None
None
None
None
None | None
None
None
None | | er | | Cloud | ⊖⊕ ≈ = | 0 = 0 0 = = | O = 0 | 0 = = 000 | 0=0000= | 0 = 00 = = | O•• | | Weathe | Surface | winds,
knots | 150/15
160/10
220/9
180/5 | 320/20
320/20
320/26
320/26
320/24 | 310/18
310/18
350/10 | 020/16
020/16
020/14
360/15
010/16
360/16 | 320/5
320/5
330/10
340/11
360/13
020/15
360/9 | 180/10
180/10
170/7
160/9
240/13 | 010/18
010/18
010/10
010/10 | | | Surface | temp., | 444
754
84 | 8 5555 | ななな | 22222
23222
24222
24222
2422
2422
2422 | 2282222 | ひなわけのの | * 52 28 28 | | Suc | | Time Mach | ind in | 444444
666666 | 4.4.4. | uuquuq
vunininin | auauauau
voovovo | uqqqqq
vvvvv | 2444 | | onditi. | | | 957
1329
1359
1558 | 929
1329
1359
1559
1653 | 927
957
1600 | 730
730
730
730
730
730
740
750 | 658
730
959
959
11329
11601
11629 | 951
1000
1550
1559
1559
1559
1689 | 929
959
11330
11400 | | Operating conditions | | Flight | 1/80
5/81
6/82
7/83 | 3/87
+4/88
5/89
6/90
7/91
8/92 | 3/95
4/96
7/99 | 1/100
2/101
3/102
4/103
5/104
6/105 | 1/107
2/108
1/100
5/111
6/112
8/113 | 3/117
4/118
5/119
6/120
7/121
8/122 | 3/13/
14/136
5/127
6/138 | | Operat | | Date | 2-17-64
2-17-64
2-17-64
2-17-64 | 2-18-64
2-18-64
2-18-64
2-18-64
2-18-64
2-18-64 | 2-19-64
2-19-64
2-19-64 | \$ | ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़
ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़
ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़ढ़ | \$25-\$5-\$5-\$5-\$5-\$5-\$5-\$5-\$5-\$5-\$5-\$5-\$5-\$5 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | TABLE III. - SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A FOR DAY ALL FOR AN ALTITUDE OF 32,000 FEET - Concluded | $\overline{}$ | | | | | | | | | | | | | |------------------------------------|-----------|-----------------------------------|--------------------|--|-------------------------------------|--|--|---|------------------|--|------------------|----------------------------| | | | Wave | M M | NGGKK | AN TA | H H H | N N N N | M N N N A | £ £ | NNWENT | # | F 6 | | | 4 | Io,
pos.,
lb-sec/sq ft | 0.0177 | .0168
.0209
.0142
.0174 | .0175 | .0149
.0188
.0147
.0091 | .0200
.0187
.0215 | .0182
.0187
.0183
.0169
.0196 | .0204 | .0160
.0174
.0201
.0210
.0129
.0129 | | .0162 | | | Station | Δto,
pos.,
sec | 0.043
0.050 | . 050
050
190
190 |
€₹60. | 86.
14.
18.
18. | |
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00 | .048 | 8.3.8.3.8.8.8.8 | .061 | 7
7
7
7
7
7 | | | S | Δ _{P1} ,
1b/sq ft | e.
ei | 4'2'8'2'E | 81.85 | s vi i i | ខ្ទុខខ្ទុ | ४ एवं श्रु हं <u>१</u> | 91. | यं यं श्रं शंशं शंशं शं | 74. | 8i gi | | | | Δ _{Pο} ,
1b/sq ft | 0.89
74. | 75.
40.1
54.1
57. | .76
1.19 | <u> 4</u> .6,2,8 | & <u>£</u> \$ & | 5.6.88.8.4. | 8.E | よたすなむたおや | 4. | .97 | | et et | | Wave
shape | 12 04 | N GN G | 医 | E E a | ZZZZ | SHENE | zz | NNE SE LAN | ac | z | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0251 | .0203
.0209
.0209
.0269 | .0215
4250. | .0279
.0276
.0267 | 0360.
5490.
8890. | .0267
.0250
.0258
.0251
.0212 | .0191 | . 0236
. 0399
. 0308
. 0308
. 030.
. 030.
. 030. | .0166
0197 | .0266 | | essure | Station | Δto,
Pos.,
sec | 0.0
5.0.0 | 8484 | 8.9.
4. | 42.42.42 | 449.44 | 44444 | 149. | 232325000000000000000000000000000000000 | 8.8 | 740. | | rd mooq- | Ś | Δ <u>p</u> 1,
lb/sq ft | %.
%% | ¥£&&& | ×. | ٤
٤
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢
٢ | ዸ፞፠፞፞፞፞፠፞፞፞፞ | ゖ゙゙゙゙゙゙゙゙゙゙゙゙゙ヹ゙ヹ゙ヹ゙ヹ゙ | 85.85 | ジジオはジダギジ | ย่ ซ่ | ₹ | | Sonic | | Δpo,
1b/sq ft | 69. | 26.
26.
24.
4. |
84. | .87
1.14
1.86 | 1.10 | 24.62.4.9.4.9.4.9.4.9.4.9.4.9.4.9.4.9.4.9.4. | .79
1.07 | 1.15
1.19
1.10
1.40
1.80
1.79 | 5.6 | 1.01 | | | | Wave | £ £ | E | K & | NN 4 | N N N | EN EN EN EN EN | RN GN | 服员员员已办户的 | υ | zz | | | | Io,
pos.,
lb-sec/sq ft | 0.0250 | . 0256
. 0269
. 0378
. 0267 | .0252 | .0236
.0241
.0229 | .0244
.0223
.0225 | .0250
.0220
.0170
.0170 | 9550. | . 0230
. 0217
. 0155
. 0162
. 0240
. 0240 | 6120. | .0233
049 | | | Station 1 | Δt _O ,
pos.,
sec | 4,40.0 | 84484
87088 | 945
746 | 440. | . 046
. 052
. 052 | 429999 | 946. | 22222222222
22222222222 | .065 | .931 | | | 65 | Δ <u>p</u> 1,
1b/sq ft | \$ 6. | <i>2.8.8.4.2.</i> | × . ± | ¥3×8 | 0,444
6,444
14 | ፚፚ፞ጟ ፞ ጜ፞ፘ | 3.65 | 3.8.8.8.8.8.2.4.8. | .59
59 | 24.
54. | | | | Δ _{Po} ,
1b/sq ft | 1.16 | 1.03 | .92 | |
8
8 | 883658 | 1.31 | 85.88.48.99.19.19.19.19.19.19.19.19.19.19.19.19. | 18 | .92 | | | | Cloud Precip-
cover itation | None | None
None
None
None | None | None
None
None | None
None
None | None
None
None
None
None | None | None None None None None None None | None
-S | None
None | | her | | Cloud | ⊕ = | 90 = 90 | θ = | O = 0 = | 0 = = = | 2 = # # # 2 | θ = | ⊖ = ⊕ = ⊖ = = * | = 0 | 0 = | | Weath | S, ref. o | winds,
knots | 360/13 | 180/12
200/10
180/14
180/18
200/22 | 360/10
360/10 | 120/4
120/4
050/12
050/12 | \$10/10
\$10/10
\$10/17
\$10/17 | 20/16
20/16
20/14
20/14
220/9 | 71/091 | 150/16
150/16
150/18
150/39
170/18 | 360/13
330/18 | 220/9
220/9 | | | C) we | temp., | 37
37 | 75224
52234 | 23 | 8834 | 88.4£ | ものれたにま | 62 | 2282826 | 8.80 | 8,83 | | Su | | Mach | 1.5 | 44444 | 44 | 1111 | 11.7 | 44444 | 1.5 | 44444444 | 1.5 | 1.5 | | ditio | | Time | 1690 | 931
1000
11330
11630 | 932 | 06.00
16.00
16.16 | <u> </u> | 900
1100
1110
1320
1320 | 228 | 788
988
1659
1138
1388 | 27.20 | 12/2 | | Operating conditions | | Flight | 7/129
8/130 | 3/133
4/134
5/135
6/135
8/136 | 3/141 | 1/147
2/148
7/153
8/154 | 1/156
2/157
3/158
4/159 | 2/172
2/173
3/174
4/175
5/176
6/177 | 5/182
6/183 | 1/184
2/185
3/186
4/187
5/188
6/189
8/191 | 2/191 | 1/193 | | Operat | | Date | 2-23-64
2-23-64 | \$ | \$ \ \$ \ \$. | 2-21-6
2-21-6
2-21-6
2-21-6 | %%%%
%%%%
\$\$\$\$\$ | <i>ҮҮҮҮҮү</i>
प्राप्तान्त्र
क्षेत्रक्षे | ΥΥ
999
949 | ************************************** | 44
44 | 7 7 7
4 7 7
4 7 7 | TABLE IV.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE A FOR AN ALITITUDE OF 31,000 FEET | | | Wave | EN EN | NR NR | z a | R R | A d | GN
GN | NR d | NP
NR | |------------------------------------|-----------|--|--------------------|--------------|--------------------|--------------------|--------------------|-----------------|----------------------------|--| | | | Lo,
pos.,
lb-sec/sq ft | 0.0167 | .0162 | .0161 | .0239 | .0183 | .0197
.0191 | .0161
.0160
.0283 | .0267 | | | Station | Δto,
pos., | 0.050 | 9.65 | .048
.066 | .056 | .036 | 44°. | 95.55 | .e.e. | | | St | Δp ₁ ,
lb/sq ft | g.≰. | 8, 10, | .22 | .18 | 88. | .32
.27 | ¥'4'± | ૪ં્્ર | | | | Δp _O , . | 52.0 | F.9: | क्दं | ę. ĸ | 1.08 | 1.13 | .92
.67
2.15 | 1.18
.81 | | æ | | Wave | 展展 | E E | Pr KK | A K | e R | z Ž | N N N | N QN | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | 0.0255 | 0143
0248 | .0222 | .0314
.0225 | 4980.
1980. | 7550. | .024.1
.0274
.0282 | .0241 | | saure a | Station | Δto,
pos., | 0.045
C45 | 9. g. | 9.0. | .051 | .039 | 44. | 999 | 659. | | -boom pre | St | Δp ₁ ,
lb/sq ft | 0.0
%. | ខ៌ះខ់ | ъ́я. | 57.5 | ¥ë | .45 | ギギボ | 54.
9č. | | Sont | | ΔΦο,
1b/sq ft | #7.1
1.1 |
50.1 | 1.16
4F. | 1.38 | 4.1.
12. | まま | .97 | 1.30 | | | | Wave | " E | | E a | E a | EZ | N N | K K K | £ 4 | | | - | Io,
pos.,
lb-sec/sq ft | 0.0276 | 4150. | .0236 | .0306 | .0292 | .0248 | .0221 | .0234
.0222 | | | Station 1 | Δto,
pos., | 9.0
849. | £9. | 7.75
7.75 | હું દુ | .042
038 | 949. | 128.52 | 9.9 | | | ž | Δp ₁ ,
1b/sq ft | | ₽.₹ | 8.00 | ¥.
₹. | .39 | 14.
74. | 7.4.4 | ¥ÿ | | | | ∆po,
lb/sq ft | 1.13 | 1.69 | 1.43 | 1.18 | 1.28 | 8; đ. | | .99 | | | | Cloud Precip-
cover itation | None | None
None | None
-R, F | None
None | None
None | None | None
None | None | | er | | Cloud | 0 = | = = | ⊖⊕ | θ= | 0 = | ⇒ ⊖ | 0 = = | ⊖ ≈ | | Weath | | Surface Surface
temp., winds,
or knots | 160/11 | 160/14 | 150/15 | 320/15
350/10 | 020/10 | 140/18
110/5 | 380/11
380/11
380/11 | 180/19 | | | | Surface Su
temp., v | 1.47
1.84 | 22 | 04 | 5 £ | 35 | 25 | 444 | 84 6 4 | | Sug | | | | i i i | | | | 5.1 | 1.5 | | | aditic | | Time | 1330 | 1559 | 1638 | 1330 | 1330 | 1000 | 01100
9111
1301 | 118 | | Operating conditions | | Flight Time Mach | | 12/2 | | | 2/24.3 | 3/149 | 5/160 | 5/168 | | Operat | | Date | 2-16-64
2-16-64 | 2-16-6- | 2-17-64
2-17-64 | 2-19-64
2-19-64 | 2-56-64
2-36-64 | 2-27-64 | 444
888
888
444 | 4-8-6-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8- | TABLE V.- SUMMARY OF
SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A # FOR AN ALLTITUDE OF 30,000 FEET | | | Wave | S LE d | £ £ | ¥ | N. P. | œ | N S S S S S S S S S S S S S S S S S S S | N N N N N N N N N N N N N N N N N N N | M D M M | pc; pc; | N N | |------------------------------------|-----------|--------------------------------|---|----------------|--|--------------------|------------|--|---|--|------------------|--------------------| | | | Io,
pos.,
lb-sec/sq ft | 0.0242 | 5410. | .0236 | .0191 | 0110. | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | .0164
.0187
.0209
.0215
.0215
.0164
.0151 | | .0107 | .0205 | | | Station 4 | Δto,
pos.,
sec l | 3 do | 850. | | .062 | .062 | 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9. | \$45.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00
84.00 | 9.95
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06 | .067
840. | .04t | | | St | Δp1,
lb/sq ft | 6.0
68. | \ \ | 4× | 8.5 | .18 | <i>%</i> 2 % 8 % 8 % 20 | 9.55.45.
1.56.45. | 12.081 7.111 | <u>ਜ਼</u> ਬਂ | ห์ผู | | | | wave Apo,
shape lb/sq ft | 1.10
-72
-76 | 8 1 | £.86 | 8.
8. | 94. | £288866 | 7.09.1
88.7
7.09.1
7.09.1
8.09.1 | 85.4 | .57 | .82 | | eş | | Wave | N Y K D V | , ρ, ι | U P4 | E G | M. | NNNNN | EN M M M M M M M M M M M M M M M M M M M | икития
М | αz | zz | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0287
.0209
.0211
.0166 | 1620. | .0216
4750. | .0261 | म्पुट०. | .0318
.0245
.0264
.0252
.0271 | .0228
.0228
.0244
.0256
.0261
.0220 | .0127
.0104
.0149
.0147
.0151
.0101 | .0220 | .0263 | | ssure | Station | Δto,
pos.,
sec | 0.00
0.00
0.00
0.00 | 660 | .039 | 7.42.
88.0. | .053 | 404448
404448 | 94999999999999999999999999999999999999 | 8.89.90.00.88.96
6.00.00.89.99.99.99.99.99.99.99.99.99.99.99.99. | 5.9. | \$ 7.
1.45 | | -boom pre | 8 | Δ <u>p</u> i,
lb/sq ft | 0.41
.33
.35
.57 | 74 | | 8. c. 4. | * . | i ki i i i i i | ₈ | ३ घ ४ ५ ४ ४ ४ ४ ४ ४ | vi; | .36 | | Sonic | | Δpo,
lb/sq ft | 2.15
0.50
.90
.88 | 88 | .:
82 | 1.12 | 1.03 | 1.49
1.15
1.48
1.23 | | क्षेत्रं
इंदेर्ट्ड्रिंट्वेहर्ष | 1.02 | 1.14 | | | | Wave | N
N
N | z | 22 | E 4 | ¥ | N N N N N N | K K K K K K A K | HE KENNE | æ ₽ | N. | | | 1 | Io,
pos.,
lb-sec/sq ft | 0.0252
.0207
.0365
.0386 | .0328 | .0263
.0269 | .0256
8250. | 0270 | .0238
.0247
.0247
.0218 | . 0203
. 0219
. 0204
. 0250
. 0250
. 0250 | .0085
.0121
.0117
.0116
.0150 | .0230 | .0259
.0256 | | | Station | Δto,
pos.,
sec | 9.89.99 | 9₹9. | \$ \$ | 4.4. | ₹. | 424424 | 999999999
010042000 | 33 388388
8 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | .061
540. | 946. | | | is. | Δ₽1,
1b/sq ft | 0.33
28.
11. | |
4.4. | .39 | .39 | 4 64 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | <i>ৼ৾ড়৾ৼ৾ৼ৾ৼ৾ৼ</i> ড়৾য়৾ | i siging sigi | ×.4. | 24.
74. | | | | Δpo,
lb/sq ft | 1.10 | 1.36 | 1.38 | 1.07 | 1.8 | 488656 | 5.1
5.3
1.4
2.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1 | . \ | .83
1.13 | 1.20 | | | | Cloud Precip-
cover itation | None
None
None
None | None | None | None | None | None
None
None
None | None
None
None
None
None
None | None None None None None None None | GF | None | | her | | cover | ⊕ = ⊖ = : | : : | 0 = | e = | 0 | | 0==== | + = = = = = = | = = | O = | | Weath | | winds,
knots | 150/20
150/20
240/10
240/10 | 260/11 | 7,010
010/7 | 200/5 | 320/11 | 200/10
200/10
200/15
210/21
210/21 |
180/15
180/15
180/20
180/20
220/30
220/22 | 20/18
20/18
50/18
50/18
50/18 | 71/010
71/010 | 260/6 | | | | temp., | 8842 | £4. | 33 | 24 | 97 | 227222
237222 | 9988822 | ££2827777 | ጸጸ | ₽.∄ | | sto | | Mach | 99.00 | | ų
ų | 1:5 | 1.5 | 4444444 | 4444444 | | 1.5 | 1.7 | | conditions | | Time | 25.5
688
87.8
87.8
87.8
87.8 | 1,40 | 1630 | 1530 | 1320 | 988
1119
1388
1388
1388 | 200
200
200
200
200
200
200
200
200
200 | 15 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 88 | 878 | | | L | Flight Time Mach | 7/41
8/42
3/49
4/50 | 6/52 | 7/145
8/146 | 5/151
6/152 | 8/163 | 3/195
4/196
5/197
6/198
8/200 | 1/800
1/803
1/803
1/803
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804
8/804 | 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | 1/216 | 2/260 | | Operating | | Date | 2-11-6
2-11-6
2-13-64
2-13-64 | 2-13-64 | \$\$
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2-27-64
2-27-64 | 2-28-64 | ~~~~~~
~~~~~~
~~~~~~
\$\$\$\$\$\$ | YYYYYYY
\$\$\$\$\$\$\$ | イヤイヤイヤイヤ
マ <u>キ</u> キキキキキキ
キャ | 77
99
94 | 3-15-64
3-15-64 | TABLE V.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF ALRPIANE A FOR AN ALITITUDE OF 30,000 FERT - Continued | | | Wave | TN da | 骶骨 | pc; | N N N N N N N N N N N N N N N N N N N | T N N N N N N N N N N N N N N N N N N N | AN P P P P P P P P P P P P P P P P P P P | RRRN | N N | |------------------------------------|------------|-------------------------------|--|----------------|---------|---|--|---|--------------------------------------|---------------------| | | <u>.</u> + | Io,
pos.,
lb-sec/sq ft | 0.0195
.0231
.0232
.0325 | .0193
.0173 | .0165 | .0181
.0200
.0172
.0172
.0207 | .0191
.0145
.0198
.0179
.0239
.0176 | .0153
.0131
.0200
.0200
.0157
.0121 | .0136
.0132
.0103
.0159 | .020. | | | Station 4 | Δto,
pos.,
sec | 0.040
.036
.052
.036 | .050 | ₹90. |
25.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00 | 20.20.20.2
20.20.20.2 | 4464488 | 25.25
25.25
25.25 | . 49.
7.49. | | | .S. | Δp ₁ ,
lb/sq ft | 0.50
95.
55.
55. | 12. | ĸ | ន់ខ្ទង់ខ្ទង់ ខ្ទង់ | ชชสชชช | 88885542 | | | | | | Δpo,
lb/sq ft | 1.11
1.96
1.69
1.89 | .7.
42. | •56 | 8.5.
8.5.
8.5.
1.5.
1.5.
1.5.
1.5.
1.5. |
 | | 94.
98.
98.
98. | <i>રું ફ</i> | | .8 | | Wave | NUMBER | N E | д | N M T I N M M | NNNNNN | NNAGRANN | NNN | ZZ | | Sonic-boom pressure signature data | 5 | Io,
pos.,
lb-sec/sq ft | 0.0284
.0537
.0268
.0340 | .0290
.0290 | .0265 | .0310
.0342
.0262
.0269
.0369 | .0246
.0192
.0378
.0231
.0293
.0241 | . 0225
. 0301
. 0302
. 0305
. 0149
. 0209 | .0229
.0190
.0187 | .0304 | | ssure | Station 3 | Δto,
pos.,
sec | 0.035
949
039
149 | 9.49. | .030 | 99.99 8.99.99.99.99.99.99.99.99.99.99.99.99.99 | 4.000 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | \$ 0.450.04.00.00.00.00.00.00.00.00.00.00.00.00 | 9999 | 940.
040. | | -boom pre | 25 | Δp ₁ ,
lb/sq ft | 24.0
84.4
86.0
86.0 | 14.
04. | .51 | ¥ & & 4 & 4 4 | 644.
644.
644.
644.
644.
644.
644.
644. | 864888440 | | | | Sonic | | Wave Apo,
shape lb/sq ft | 2.3
1.46
1.46
1.46
1.47 | 1.45 | 1.66 | 1.43 | 1.32
1.34
1.07
1.83 | 1.30
1.32
2.30
2.30
1.10
1.10 | 1.1
v.r.s.s. |
88. | | | | Wave | RRTHR | z d | ğ. | M N N N N N N N N N N N N N N N N N N N | E LA AN EN | THE WELL | S E E E | R N | | | 1 | Io,
pos.,
lb-sec/sq ft | 0.0270
.0261
.0262
.0283 | .02½ | .0339 | .0226
.0200
.0283
.0283
.0246
.0246
.0201 | .0260
 | .0265
.0259
.0186
.0226
.0235
.0215 | 2420.
2020.
30259 | .0252 | | | Station 1 | Δto,
pos., | 9.00.03
7.00.03
7.00.03 | 44. | 740. | 25444444444444444444444444444444444444 | ¥ \$ 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 9999 | . o ⁴ 9. | | | iós . | Api,
lb/sq ft | 0.0
8%.0
14.1
64.1
64.1 | 14.
14. | •52 | ************ | <i>2</i> ,25,2,85,4 | 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | £4. | | | | | Δp _o ,
lb/sq ft | 1.1.
83.1.
84.1. | 1.23 | 2.09 | 1.18
1.51
1.45
1.45
1.09 | 41.1
1.06
1.06
1.08
1.08
1.28 | | 4444
8444 |
1.288 | | | | loud Precip- | None
None
None
None | None
None | None | None
None
None
None
None
None | None
None
None
None
None | None
None
None
None
None
H | None
None | None | | r. | | Cloud | 0 = = = = | O = | 0 | 0 | 0=0=20* | 0 = 0 = 0 = 0 = | ⊕ = = ≠ | 0 = | | Weather | | Surface
winds,
knots | 210/8
210/18
210/18
220/17 | 150/12 | 8/010 | 150/13
150/13
150/18
150/18
160/15
160/15
140/18 | 170/15
170/15
180/15
200/22
210/15 | 180/14
180/14
200/18
200/18
200/17
200/17
200/12 | 350/15
350/15
330/20
330/20 | 360/3 | | | | Surface
temp., | 57
57
63
63 | 39 | 7,5 | 44378388
88888 | 50
50
60
60
60
60
60 | 27.8889322 | 2288 | 13 | | suc | | | 7:11 | 1.5 | 1.7 | 2
2
2
2
5 | | | 1.7.4 | 1.5 | | nditto | | Time Mach | 920
1100
1120
1301 | 720 | 1300 | 700
720
859
920
1100
1120
1303 | 700
1200
1120
1320 | 700
920
920
1100
1130
1301 | 1100
1119
1300
1320 | 272 | | Operating conditions | | Flight | 1/265
8/265
8/265
8/265 | 1/267 | 6/300 | 8/3/3/2/
3/3/3/2/2/2/2/2/2/2/2/2/2/2/2/2/ | 1/310
2/311
3/312
5/314
6/315
1/316
8/317 | 2/32
4/32
6/32
8/32
8/32
8/32
8/32
8/32
8/32
8/32
8 | 2/327
3/328
1-/329
5/330 | 1/551 | | Operat | | Date | 7777
7777
7777
7777
7777
7777
7777
7777
7777 | 3-16-64 | 3-21-64 | \$ | \$ | \$\$\$\$\$\$\$\$\$
\$\$\$\$\$\$\$\$\$ | *****

**** | 3-26-64 | TABLE V.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGERS OF AIRPIANE A FOR AN ALITHUDE OF 30,000 FEET - Continued | | 4: 4: | | | | | | |---------|-------------------------------|--
--|--|--|--| | | | × G E E F | AN P P P N | RRNNRR | N M M M M I M M | P. M. | | 4 | Io,
pos.,
lb-sec/sq ft | 0.0179
.0192
.0172
.0166 | .0189
.0154
.0282
.0282
.0278
.0278 | .0132
.0142
.0158
.0266
.028
.0128 | .0195
.0195
.0153
.0185
.0090 | .0227
.0217
.0178
.0238
.0167
.0204
.0214 | | tation | Δto,
pos.,
sec | 0.0
0.0
0.0
0.0
0.0
0.0 | \$ 65 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 48549999
4864499 | 9.99.90.00.00.00.00.00.00.00.00.00.00.00 | 46688866 | | ι σ | Δp ₁ ,
1b/sq ft | 11111 | 1111111 | | 11111111 | 11111111 | | | ΔΦο,
1b/sq ft | 88868 | 1.07
1.02
1.08
1.39
1.39
1.07 | 43.48.48.48. | ;
88%48 \$ \$ | 1.40
1.70
1.10
1.12
1.12
1.12
38 | | | Wave | EN M EN EN | ***** | RNPRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR | N N N N N N N N N N N N N N N N N N N | T T K K K K | | 3 |
Io,
pos.,
lb-sec/sq ft | 0.0263
0259
0259
0231
0238 | .0239
.0190
.0328
.0245
.0311 | 10.098
10.098
10.097
10.092
10.092
10.092 | .0295
.0324
.0226
.0246
.0185
.0217 | .0289
.0201
.020.
.0259
.0259 | | tation | Δto,
pos., | 0.03
0.04
0.04
0.04
0.05 | 9999999
99999999 | \$ 600 600 600 600 600 600 600 600 600 60 | 444868888 | 44694498 | | Š | Δp ₁ ,
lb/sq ft | 11111 | 1111111 | | | 11111111 | | | Δpo,
lb/sq ft | 48488 | 1.11111
78845348 | 46.0583338 | 55.1
88.1
71.1
71.1 | 8.5.
8.5.
8.5.
7.4.1
8.4.1 | | | Wave | ## ## | EN R I LEGE | * # # # # # # # # # # # # # # # # # # # | E E E E E E E E E E | EN N N N N N N N N N N N N N N N N N N | | 1 | t i | 29820.0
2750.
4950. | 0255
0266
0294
02720 | | 0229
0229
0229
5750
5750
1750 | .0239
.0239
.0239
.0248
.0211
.0211 | | tation | Δto,
pos.,
sec | 33 33 | 25.00
25.00
24.00
24.00 | 999999999
60000000000000000000000000000 | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 32333388 | | Ó | Δp ₁ ,
lb/sq ft | | | | | 11111111 | | | | 1.16 | 1.11 | 5886825
288688 | 855004488 | 1.98 | | | Precip-
itation | None
None
None
None | None
None
None
None
None | F
GF
GF
None
None
None | None None None SZR, -E ZR, -E None None | None
None
None
None
None
None
None | | | Cloud | 00=0= | 0 • 0 0 = 0 = | ⊕ = X = O = ≠ = | 0 = 0 = 0 = = = | 0 = 0 = = 0 = | | | | Calm
360/4
360/4
200/10
200/10 | 110/7
170/7
290/5
290/5
170/4
170/4 | 020/18
020/18
030/16
030/16
050/10
050/10 | 090/10
090/10
150/10
150/10
210/5
210/5
230/8 | 180/12
180/12
220/20
220/20
220/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
240/20
24 | | Surface | temp., | ごごたた8 | 22222E | 22558877
22578877 | たみなればななな | 8844588 | | | Mach | 11111 | 444444 | 27.27.27.27 | 444444 | | | | Time | 98
1119
138
138
138 | 659
719
1100
1130
1321 | 700
900
900
919
1101
1120
1530
1530 | 65
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | Flight | 3/333
5/335
6/336
1/337
8/338 | 8/4/2/2
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2,7±7
2,7±8
3,7±9
5,750
6,750
8,750
8,750
8,750 | 1,355
2,356
2,356
1,358
6,359
8,361
8,361
8,361 | 8/63/2 F 2/63/2 2/6 | | | Date | ************************************** | 444444
44444
44444
44444 | <u>үүүүүүүү</u>
<i>8888888888</i>
444444444 | 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7. | 77777777
99999999999999999999999999999 | | | Surface | Flight Time Mach temp. Surface S | Filght Time Mach temp., vinds, cover itation lb/sq ft lb/ | Plight Time Mach temp. Attach temp. Attach temp. Attach temp. Attach temp. Attach temp. Attach Atta | Purface Surface Surf | | TABLE V.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF ALREIANE A FOR AN ALITITUDE OF 30,000 FEET - Coucluded | | | Wave | NEUNUNE G | A | * # # ° # # # | EN PERE | EN N EN | K K K | NR
R R | |------------------------------------|----------------|--------------------------------|--|--|--|--|--|--|--------------------------------------| | | . . | Io,
pos.,
lb-sec/sq ft | 0.0219
.0234
.0241
.0246
.0246 | .0130
.0131
.0106
.0256 | .0193
.0131
.0220
.0208
.0125
.0189 | 7410.
0128
0150.
0120.
0128
010.
7410. | .0182
.0165
.0160
.0193
.0190 | .0055 | .0175
.0173
.0155 | | | Station 4 | Δto,
pos.,
sec | 545.
575.
575.
575.
575.
575.
575.
575. | 4000
1300
1400
1400
1400
1400
1400
1400 | 4646468 | 838 8888 | 44668866 | 990. | .056
050 | | | ξ | Δp1,
lb/sq ft | 1111111 | | | | | | | | | | Δp _O ,
lb/sq ft | 26.0
12.09
12.67
26.
27.
28. | 4 3 3 4 | & & & & ! ! ! ! ! ! ! ! ! ! | £84 198 £4 | 88484858 | 525 | 88.
18.
07. | | 8 | | Маvе
вћаре | AN A | 4 | N N N N N N N N N N N
N N N N N N N N | K K K K K K C C | N N N N N N N N N N N N N N N N N N N | # | NP
N
N | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | 0.0306
.0294
.0297
.0287
.0318
.0318 | .0262
.0266
.0151 | .0266
.0230
.0230
.0230
.0241
.0208 | .0144
.0127
.0270
.0186
.027
.0297
.0285 | 2120
1941
2020
2020
1020
2020
2020 | 4410.
4510. | .0238
.0242
.0259 | | seure s | Station 3 | Δto,
pos.,
sec | 9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 950
950
570 | \$ \$ \$ \$ \$ \$ \$ \$ \$ | \$ 6.52 \ 2.50 \ 2.50 \ 2.50 \ 2.50 \ 3.50 \ | £33,33,33,53
£33,33,33,53,53,53,53,53,53,53,53,53,53,5 | \$.08.9.
\$.08.9. | 450
553
550
540 | | -boom pre | St | Δρ ₁ ,
lb/sq ft | 1111111 | 1111 | 1111111 | 11111111 | 11111111 | 111 | 1111 | | Sonic | | Δ <u>φ</u> ο,
1b/sq ft | 9848488
11111111111111111111111111111111 | 2.4.
1.4.
1.4.
1.4.
1.4.
1.4.
1.4.
1.4. | 1.23 | % | 04. 8. 4. 8. 4. 6. 6. 4. 6. 6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | Ŀ <u>%</u> ¥ | 1.29
.92
1.39
1.41 | | | | Wave
shape | N
N
N
NR
NR | R R C | N H H H N N A | R R R R R R R R R R | R E E C R E E | 服品中 | NNN | | | 1 | Io,
pos.,
lb-sec/sq ft | 0.0216
.0251
.0271
.0242
.0205
.0205
.0205 | .0152
.0207
.0151
.0316 | . 0202
1.020.
1.020.
0.020.
1.420.
1.420. | . 0242
. 0139
. 0243
. 0234
. 0262
. 0262 | . 0229
. 0229
. 0230
. 0257
. 0250
. 0250
. 0250 | .0237
.0224
.0290 | .0235
.0225
.0292
.0236 | | | Station 1 | Δt_o , pos., sec | 244
244
244
254
254
254
254
254 | 500 | 84444444444444444444444444444444444444 | 25525252
25525252
25525252 | \$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \$ 5.5
5.5
5.5
5.5
5.5 | .053
.053 | | | ž | Δp ₁ ,
lb/sq ft | 11111111 | 1111 | | | | | 1111 | | | | Δp _o ,
lb/sq ft | 4.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 1.02
24.1 | 1.02 | & 4 &%; | | 1.18
.92
1.64 | 3.538 | | | | Cloud Precip-
cover Itation | None
None
None
None
None
None | None
None
None
None | None
None
None
None
None
None | -RW -RW None None None None None | None
None
None
None
None
None | None
None
-RW | None
None
None | | er | | Cloud | 0=0==== | ₽ = ⊖ = | 0=0=0= | ⊕===⊖= | ⊕ ≠ ⊕ ≠ = = ⊖ = | # = = | 0=== | | Weather | Surface | winds,
knots | 140/6
140/6
130/17
130/17
120/13
140/8 | 140/10
140/10
120/12
120/12 | 290/10
290/10
330/12
350/12
320/10
320/10 | 230/17
230/17
230/17
230/17 | 150/11
150/11
160/12
160/12
160/15
160/15
160/15 | 190/15
190/15
170/24 | 160/12
160/12
200/12
200/12 | | | Shriface | temp., | 77755488 | 8888 | 57
57
59
62
67 | 00002277 | 3324455 | \$88 | 3355 | | anc | J., | Mach | 2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 2.1.1.5.1.5.1 | 11.11.11.11.11.11.11.11.11.11.11.11.11. | 4444444 | | 1.7 | 2.1 | | nditio | | Time | 217
219
219
219
219
219
220
2321 | 878
878
819 | 700
719
859
919
1059
1300 | 788
959
1059
1119
1580 | 988
988
1118
1388
1388
1388
1388
1388
13 | 1120 | 700
920
920 | | Operating conditions | | Flight Time | 1/637
2/638
3/639
1/640
5/641
6/642
7/643 | 1/64
2/65
1/66
1/66 | 1/648
2/649
3/650
4/651
7/654
7/654 | 1/655
2/656
3/657
4/658
6/660
1/661
8/661 | 1/663
1/664
1/666
1/669
1/669
1/669
1/669
1/669 | 1/671
2/672
3/673 | 1/675
2/676
3/677
4/678 | | Operat | | Date | ~~~~~~~
\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 5-10-6
5-10-6
7-10-6
7-10-6 | 77-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 77-16-16-16-16-16-16-16-16-16-16-16-16-16- | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5-15-64
5-15-64
5-15-64
5-15-64 | 5-16-6
5-16-6
5-16-6
5-16-6 | TABLE VI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A FOR AN ALITITUDE OF 29,000 FEET | | | Wave | мм | AR R R | A E E E | NN | AN A | AN W W W W D | |------------------------------------|-----------|--|----------------------|-------------------------|---|--|--|--| | | 77 |
Lo,
pos.,
lb-sec/sq ft | 0.0102 | .0175
.0155
.0165 | .0189
.0211
.0298
.0198 | .0159
.0164
.0110
.0220
.0220
.0288 | .0188
.0187
.0195
.0207
.0226
.0270 | .0188
.0156
.0157
.0157
.0197
.0197 | | | Station 4 | Δto,
pos., | 0.072 | 55° | 3.62.43.8 | 5.54
5.05
5.05
5.05
5.05
5.05
5.05
5.05 | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 366.633468 | | | S | Δp _o , Δp ₁ ,
lb/sq ft lb/sq ft | 0.14 | 86.
82. | មជស់ស្ <i>ខ</i> | इंअं <u>चंश्वंश्वं</u> धं | | ४ इंग्रंग्ड्रं
इंग्रंग्ड्रं | | | | Δp _o ,
lb/sq ft | °.
%≰. | 843 | 5.52.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 1.54.7. | | 644.8814.6 | | | | ивvе
вћаре | E ! | ZZZ | 5 5 5 8 8 a | CKKTVKKO | NNN NN N N N N N N N N N N N N N N N N | N H L L L L R N H N H N H N H N H N H N H N H N H N | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0179 | 0276 | | .0226
.0212
.0308
.0308
.0302
.0321
.0327 | .0289
.0249
.0277
.0297
.0319
.0319 | . 0278
. 0283
. 0360
. 0310
. 0255 | | saure s | Station 3 | Δto,
pos., | 0.050 | \$ 63.7
\$ 5.75 | 9.5.5.5.00 | 24099944
440000044 | 999999999
1100000000 | 9.9.5.7.4.9.9.0.7.4.9.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | | boom pres | St | Δp ₁ ,
lb/sq ft | 0.27 | 388 | ;;; 3 ;%% | 52454455 | 8824894 | £53 £588 | | Sonte | | Δφο,
1b/sq ft | 0.69
64. | 488 | :
;;;;;;; | 11.39.48.84 | 1.15 | | | | | Wave | 医肾 | | NGN | M K N M A N N N | ON N ON | M T W M T W M | | | | Io,
pos.,
lb-sec/sq ft | 0.0208 | | .0252
.0251
.0252
.0252 | 25.00.00.00.00.00.00.00.00.00.00.00.00.00 | 1420
0.0259
0.0259
0.029
0.020 | 0269
0259
0259
0259
0259
0259
0459 | | | Station 1 | Ato,
pos., | 0.048 | | 9.5.5.9 | 999999998
2010111 | 39999999999999999999999999999999999999 | \$0555555
\$0555555 | | | 35 | Δp1,
lb/sq ft | 0.35 | 54. | i i i i i i i i i i i i i i i i i i i | 24443468 | <i>चेन्द्रं</i> शंखं बंबं | 84 <i>8</i> 434 <i>2</i> 3 | | | | ∆po, 111 111 111 111 111 111 111 111 111 1 | .98 | 1.15 | | 24.1.
88.64.1.
88.64.1. | | . i i i i i i i i i i i i i i i i i i i | | | | Cloud Precip-
cover itation | E4 E4 | None
None
None | None
None
None
None | None
None
None
None
None
None | None
None
None
None
None | None
None
None
None
None | | i i | | Cloud | + = | 0 = = | = 0 = 0 = | D:330=5= | | 0 = 0 = = = = = | | Weather | | Surface
vinds,
knots | 390/14 | 160/9 | 160/14
140/22
140/22
170/20 | 330/16
330/16
330/18
320/23
320/23 | 160/10
160/10
160/14
160/14
180/17
180/16 | 160/13
160/13
190/24
190/24
190/24
190/24 | | | | temp., | 88 | 828 | 83758 | 582227 | | | | 910 | | Жвср | 1.5 | | | | | | | 10 | _ | d) | 988 | 888 | 88888 | 82888333 | 05 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 85 88 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | nditio | | 17. | l | | 2001 | | | | | Operating conditions | | Flight Time Mach | 3/218 90
4/219 99 | 2/220 | 7-10-64 4/223 9
7-10-64 5/224 110
7-10-64 6/225 111
7-10-64 7/226 133
7-10-64 8/227 133 | 7/22
7/23
7/23
7/23
7/23
7/23
7/23
7/23 | 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | 20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2017
20/2/2 | TABLE VI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHES OF AIRPIANE A FOR AN ALITITUDE OF 29,000 FEET - Concluded | | | | | | | | | | | | | | | | _ | | | | | | _ | |------------------------------------|-----------|--|---------------|---------|-------------|---|---|------------------|------------|------------------|----------------|------------|----------------|--------|--|----------|-------|--------|--------|----------|--------| | | | Wave | R & | ž č | pr, | ž p | • | 1 | z | R | ZZ | æ | Ä | | <u> </u> | | 1 | 1 8 | ž ž | Ę | ! | | | | Io,
pos.,
ib-sec/sq ft | 0.0152 | 6/10. | .0139 | .0189 | | 1 | .0103 | .0144 | .0221 | .0136 | , 0224 | - | 1 1 1 1 | | - | 100 | ± 80 | 7.60 | 1770. | | | Station | Δto,
pos.,
sec | 0.056 | \$ 8 | 46. | 9 6 | | | 940. | ₹. | 7 7 | .051 | .051 | 1 | - | - | 1 | 240 | ÷ 6 | 3 8 | 3, | | | ts | Wave Δp_0 , Δp_1 , shape $1b/sq$ ft $1b/sq$ ft | 0.19 | ₹.
8 | 31. | នុះ | ? | ส: | 3.5 | *₹. | £'8i | 11. | .27 | - | 1 | : | 1 | | ! | 1 | | | | | Δpo,
b/sq ft | 0.57 | 5 | 4. | .87 | S | 55. |
 | .72 | 1.08 | 99* | æ. | ! | ! | ! | : | 7 | ŧ. | | 1.46 | | - | | Wave
shape | A Z | E É | E E | ph t | ч рч | N. | ž | × | zz | œ | Ą | Z | z | z. | E I | - I | ¥ | <u> </u> | 4 | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | 0.0241 | 6420. | 920. | 9630. | .033
4.60 | +120· | | +1,20° | .0338 | .0188 | .0264 | .0258 | .00.5 | .0303 | •02#6 | 0255 | 0200 | 2020. | ±020. | | sure st | Station 3 | | 0.030 | 9. | 3.4 | .037 | 9.9
8.2 | · 042 | 5.6 | . <u>4</u> | 0.046 | 680 | .039 | 045 | 9 | ₹
8 | စ် | 1 | 0 1 | ₹
5 | ş. | | boom pres | Str | Wave Δp_0 , Δp_1 , Δt_0 , shape $1b/8q$ ft $1b/8q$ ft $pos.$ | 0.36 | 8: | | ÷. | | 82. | <u>a</u> & | 3.4 | 5,3 | .32 | ∄. | 1 | 1 | - | 1 | - | - | - | 1 | | Son1c- | | Δ₽ο,
.b/sq ft | 1.88 | 66 | ;;
;; | 80 | 2.10 | 8, | 1,47 | 1.83 | 1.42 | 8 | 1.39 | 71.1 | 1.31 | 1.35 | 1.20 | 23 | 8. | 1.23 | 2.10 | | | | Wave | z Ž | z | Z Z | ρï | p _i pc | z | zz | × | z g | æ | N. | Æ | z | Z | NR | E | z | ĕ | Æ | | | | Io,
Pos.,
lb-sec/sq ft | 0.0231 | 0540 | 0865
787 | 7610. | .0260 | .0262 | 9229 | .0201 | 7610. | . 0205 | 9920. | .0273 | 6420 | .0274 | 6920. | 6920. | .0287 | .0229 | .0232 | | | Station 1 | | 0.044
.037 | 040. | 5.5 | 9. | 84 | ₹. | 7.0 | 5.5 | 300 | , ż | 970. | 848 | 5.
OH2 | Q+5 | ₹ | 840. | 940. | •052 | .651 | | | Ste | Δp ₀ , Δp ₁ , Δt ₀ , 1b/sq ft 1b/sq ft sec. | | _ | _ | | 88 | · 45 | 8. | į÷. | 05. | . % | 74. | 1 | ! | 1 | | i | į | - | ! | | i | | Δpo,
lb/sq ft | 1.16 | 8 | 1.16 | ;
;
; | å₽. | 1.17 | કરે. | .97 | 1.18 | ÷T•T | 1.10 | 8. | 7.7. | 1.22 | 7.06 | 1.03 | 1.8 | 1.14 | 1.03 | | | | Cloud Precip-
cover itation | None None
-S | None | H | - | Cloud F | Θ= | 0 | - = | | θ= | 0 | - | = 2 | Θ | • • | 0 | Ф | | _ | | = | = | 0 | - | | Weathe | | Surface
winds,
knots | 260/11 | 360/12 | 360/12 | 21/010 | 020/16
020/16 | 310/8 | 310/8 | 310/3
310/3 | 150/10 | 310/30 | 9/010 | 01/016 | 01/01/01/01/01/01/01/01/01/01/01/01/01/0 | 200 | 200/8 | 200/12 | 200/12 | 220/10 | 220/10 | | | | Surface temp., | 13.2 | 64 | 22 | 1 2 | 75.85 | , ₇ 7 | · 12. | \$.C | 94 | 75 | , 1 | 7 | 3 | 2.5 | 0 | .6 | 629 | [| 72 | | Sg | t | | 1.5 | - 5 | 1.7 | 7.7 | 1.5 | | 1.7 | 1.5 | 7.5 | 1.5
1.6 | 1.7 | ĸ | 1. | - u | να. | | 7.7 | 1.5 | 1.7 | | litior | | Pitme | 55 | 18 | 8,5 | 311 | 1320 | 200 | 729 | 866 | 8 | 780 | 1320 | 2 | 3 5 | - 8 | 8 8 | 100 | 1119 | 1300 | 1319 | | Operating conditions | | Flight Time Mach | | | | | %
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
% | |
2/2/4 | 3/275
1-/276 | 1/281 | 2/362 | 1/301 | 1/263 | 2/2/2 | 7/26 | 7.50 | 2/1/2 | 2,0 | 2/20 | 8/370 | | Operati | | Dete | 9-17-6 | 7.4 | 4-1-6 | 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 4-4-6 | 7-7-1 | 7-17-6 | 7-17-6
7-17-6 | 3-18-64 | 718-6 | 4-2-5 | 2 23 | 7. | 12 12 12 | 1 | 7 | 12 | 7.7 | 7-21-6 | TABLE VII.- SUDMARY OF SOMIC-BOOM DATA FOR VARIOUS FIIGHTS OF AIRPIANE A FOR A AMINITUDE OF 28,000 FEET | | | Wave | NR
NP
NR | ğ | THE RESERVE | R N N N N | O O M × M × M A | R H H H H H H H | |------------------------------------|-----------|--------------------------------|--|-----------------|--|--|---|--| | | | Io,
pos.,
lb-sec/sq ft | 0.0145
.0190
.0145 | 48to. | .0145
.0158
.0270
.0137
.0101
.0105 | . 0159
. 0186
. 0155
. 0326 | .0111
.0218
.0108
.0218
.0139
.0139 | .0118
.0139
.0138
.0188
.0181
.0157 | | | Station 4 | Δto,
pos.,
sec | ÷355 | 640. | 99999999999999999999999999999999999999 | 4888 | 849496
840496
7769 | C 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | <i>₽</i> | Δρ ₁ ,
lb/sq ft | 5. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | .27 | | | | | | | | Δp _ο ,
1b/sq ft |
\$4.25.E. | 1.08 | 1.08
1.18
5.17
7.77 | . 69.
69.
1. | | <i>शंद्</i> षंद्रश्चं रंग् | | et et | | Wave
shape | × B E × | × | NENERRA | # # # B O | O H H H H H H H H | E CHEN E E E | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0278
.0270
.0286
.02450. | .0245 | 9889
9889
9889
9889
9889
9889
9889
988 | .0180
.0269
.0269 | .0201
.0235
.0189
.0183
.0286
.0292
.0213 | 20202
20203
20203
20203
4720.
4720.
4720. | | seure s | Station 3 | Δto,
pos., | 0.052
0.039
0.039 | -0 , | 4949849 | 4,0,44 | 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9. | 8.83.89.99.99
7.78.49.99.99 | | hoom pres | Š | Δp ₁ ,
lb/sq ft | 04.0 | 24. | | | | | | Sonic- | | ∆po,
1b/sq ft | 2.04
1.10
1.18 | 1.17 | 88.53.84 | 46.
1.79
1.71
1.74 | 21.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | 98.1.
98.1.
98.1.
10.1.
11.1. | | | | ⊮ауе
sbape | ž×ž× | z | n d z z z z d | N N N N | \$1 | THE RESERVENCE OF THE SECOND S | | | | Io,
pos.,
lb-sec/sq ft | 0.0219
.0229
.0248
.0226 | .0231 | 0264
1720
0240
0268
0352
1332 | 2.00.00.00.00.00.00.00.00.00.00.00.00.00 | .0259
.0233
.0237
.0227
.0248
.0219 | .0233
.0196
.0196
.0194
.0304
.0304
.0306
.0306
.0306 | | | Station 1 | Δto,
pos., | 9
9
9
9
9
9
9
9 | . 43. | 2222223 | 9 9999 | 44444 | 4444666 | | | S. | Δp ₁ ,
lb/sq ft | 12.0
25.
4. | .59 | | | | | | | | Δφ _ο ,
1b/sq ft | 1.09
1.07
1.23 | 1.02 | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | .95
1.10
1.1.1 | 4444 44
888888 | 44846489
4846489 | | | | Cloud Precip-
cover itation | None
None
None | None | None
None
None
None
None | None
None
None | GF
GF
None
None
None
None | None
None
None
None
None
None | | F | | Cloud | 0 = = = | θ | 0 = = = 0 = = : | 0=== | 0 0 - 6 - | Φ:==Θ*Θ= | | Weather | 9 | winds,
knots | Calm
Calm
180/4
180/4 | 150/12 | 200/15
200/15
200/15
190/23
190/23 | 20/20
20/30
230/30 | 120/8
120/8
350/6
350/6
030/7
030/16 | 320/6
190/5
190/5
200/14
200/18
210/18 | | | 9 | temp., | 8623 | 82 | 888382 | 3888 | %333858% | 0.00 p t t t t t | | anc | | | 4444
4444 | 1.5 | 444444 | 1.7 | | | | nd1t1c | | Time Mach | 1,200 | 8 | 845
825
825
825
825
825
825
825
825
825
82 | | 288888
28888
28888
28888 | 659
720
859
919
1118
1259
1319 | | Operating conditions | | Flight | 5/277
6/278
7/279
8/280 | 3/283 | 475/2
475/2
475/2
475/2
575/7
575/7
575/7 | 2/379
2/380
3/381
4/382 | %%%%%%
%%%%%%%%
%%%%%%%%%%%%%%
%%%%%%%% | 1/391
2/392
1/394
1/394
1/394
8/393 | | Operat | | Date | 3-17-6
3-17-6
3-17-6
3-17-6 | 3-18-64 | 4+4+4+4
4-4-4-4
4-4-4-4-4-4-4-4-4-4-4-4- | | 7777777
77777777
44444444 | 7777777
77777777
999999999 | TABLE VII.- SUMMAKY OF SONIC-BOOM DATA FOR VARIOUS FLICHES OF ALIFFIANE A FOR AN ALITITUDE OF 28,000 FEET - Continued | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | _ | | | | _, | |------------------------------------|-----------|--|---------|---|--------------|------------------|--|---------------------|--------|--------|--------|------------------|----------|--------|-------|--------|--------|--------|--------|--------|----------|-------------------|-------|------------|------------------|--------|----------|--------|----------------------|--------|--|--------|-------------------| | | | Wave | £ £ | ę. | E ! | 2 9 | E E | p4 | æ! | ž ģ | £ 9 | <u> </u> | , р. | £ | Æ | E. | ď. | Ā. | ž, | 4 5 | £ | υ | ; | z 2 | . 4 | ļ | NR | z | æ | 1 | z | NR | A. | | | | Io,
pos.,
lb-sec/sq ft | 9910.0 | .0217 | 9210. | .0215
25.55 | 27.10 | .0132 | .0140 | .0197 | . OT (| 010 | 0245 | 000 | .0193 | .0151 | .0207 | .0187 | 940. | 0176 | 0010 | .028 4 | | .0192 | 5710 | | 0100 | 010 | 0137 | 7010. | .0192 | .0193 | .0258 | | | Station b | Δto,
pos.,
sec | 0.040 | \$ | 940. | 150 | 3.6 | 9. | .87 | 9 | 3 2 | 9,6 | 100 | 8.5 | .8. | 75 | 032 | 040. | 4.0 | † c | 7 6 | 88 | | 0.0
0.0 | 2 2 | | 240 | 000 | .062 | \$ | ą. | 9 | 650. | | | St | wave $\Delta p_{\rm O}$, $\Delta p_{\rm I}$, shape $1b/{\rm sq}$ ft $1b/{\rm sq}$ ft | 1 | | 1 | } | 1 1 | | ł | ! | ! | | | | ! | į | 1 | | ! | : | : | | | 1 | | . | | | ; | 1 | | ! | 1 | | | | Δpo,
b/sq ft | 1.02 | 1.12 | 6 | -
%: | ý.
E | 1.8 | .55 | 8 | 20. | ŧ. | , c | 1.15 | .85 | 69 | 1113 | 1.08 | ₹
1 | ģ | <u>.</u> | :
3.5 | | g, 2 | ۲۶ | | 12 | . 8 | ξ. | Ţ. | 62 | .87 | 1.70 | | | | маvе
завре | 22 | e de | MR | | AN I | z | Ŗ | ps, i | α; | z (| <u> </u> | £ 25 | z | | . z | N. | | E F | ž ģ | E | | 2; | z § | | <u> </u> | 2 | <u>.</u> | MR | ğ | z | × | | Sonic-boom pressure signature data | | Lo,
pos.,
lb-sec/sq ft | 4650.0 | .0352 | 0500 | .0275 | 0.
10.
10.
10.
10.
10.
10.
10.
10.
10.
1 | 0220 | 7920. | .0228 | .0273 | -037± | 2020 | 1400 | .0274 | A POO | 040. | 6150. | .0293 | 6980 | 2020 | #120° | : | .0273 | 2620 | 1900 | 1000 | 2 | 6980 | 6220 | 900 | 0.087 | .0281 | | sure si | Station 3 | Δto,
pos., | 30.0 | 3 3 | 8,0 | 037 | 0,0 | 8.69 | 040. | 80. | .037 | 9 | 0 0 | 3 5 | 9 | 720 | 3.5 | 240. | 90. | 945 | 200 | 3 | | 3 | 9,0 | 2 4 | 5 5 | 5 5 | 030 | 5 | ç | 13 | 9 t 0. | | noom pres | St | | i | | ; | 1 | | | | ŀ | ŀ | ; | ! | | 1 | | | ì | ! | 1 | | | | ! | 1 |] | 1 | 1 | | { | | | { | | Sonic-b | | Wave Δp_0 , Δp_1 , shape $1b/sq$ ft $1b/sq$ ft | 1.43 | - K | ति
।
। | 1.91 | 1,41 | 58 | 1.98 | 8, | 9 | ٠.
ب |
₹. | 7.7 | 1.33 | 7. | 35. | 1.33 | 1.39 | 1.1. | 1.77 | 8 % | | 1.05 | 1.37 | C | # 1 | 7. | 1 0 | 24. | | - 0 | 1,4 | | | | Wave
shape | z | Z Z | Æ | NR | E, | 4 B | × | z | Æ | E ! | ž į | ž į | i E | Ę | 4 z | £ | æ | E. | Œ ! | ž ž | ! | Æ | ĝ, | Z ; | ء إ | ž į | ž ž | Ŕ | ğ | Ę | Ě | | | | Io,
pos.,
lb-sec/sq ft | 0.0205 | 0831 | 400 | .0235 | .0226 | .0213 | 0270 | 6420. | .0274 | 174ZO. | 66.69 | 0.0241 | .0175 | , and |
1000 | 0259 | 0225 | 6520 | .0263 | 5250
5260 | 200 | 4050 | .0277 | .0252 | 0000 | ccco. | 130.
140.
140. | 980 | 100 | , t do | 740 | | | Station 1 | Δto,
pos., | \$ to 0 | 6.50
6.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1 | 13 | £. | 0,0 | - Z | 9 | 040 | 940. | о т 5 | đ. | 3-3 | 3 | | 100 | ेर्ड | 4 | ₹ | 540 | 9 0 | | ·043 | 9. | ğ. | 9 | N 6 | 5
5
7 | 3,0 | 1 1 | - K | 8 | | | Ste | Ap1, 11 lp/sq ft | Ť | 1 | | | | | ŀ | i | - | ļ | - | ! | | | | | | 0.73 | đ. | 8.5 | ? | .93 | 98. | 95 | ٥, | 6 | ± & | 2 5 | : : | ÿ. | | | | | Δp ₀ ,
1b/sq ft | 1.1 |
87 | 8.6 | 18 | 1.1 | 1.27 | 041.1 | 1.58 | 1.17 | 1.15 | 1 | 3, | 1: | : 8 | 3.8 | 36 | 8 | 1.23 | 8. |
82 | 3 | 1.40 | 1.48 | 1.17 | 1.3 | 1.75 | 7.5 | 1.8 | 3 | 1.12 | ; ; | | | | Cloud Precip-
cover itation | None | None | None | None | None | None | Mone | None | None | None | None | None | None | , | None | None | None | None | None | None | PTOT | None | None | None | | er | | Cloud | 0 | - | = 7 | θ | * | × = | € | - | = | - | θ | - | = = | | 0 = | : = | . 3 | 2 | × | = = | | | æ | £ | = | - | - : | = = | | | - 0 | | Weathe | | Surface
winds,
knots | 180/8 | 180/8 | 210/12 | 20/16 | 210/16 | 280/38
280/38 | 360/1B | 360/18 | 360/20 | 360/20 | 050/50 | 020/50 | 02/20 | 04/0/- | 01/096 | 21/00/ | 21/010 | 050/10 | 050/10 | 240/13 | CT/05 | 180/7 | 180/7 | 200/10 | 200/10 | 210/15 | 20/15 | CT/022 | Celos | 02/061 | 180/12 | | | | temp., | 89 | \$ | 9 % | 3 E | 2 | 25 | : 5 | 14 | ÷ | , th | L+ | 9 | S 5 | \ | ₩. | ŧ, | 23 | : £ | φ, | 22. | 7. | 37 | 2 | 52 | 53 | 28 | 8 (| 24 | š . | 1,47 | 26 | | But | | Mach | i | | | | _ | 7.7 | | | | | | | | | | | | | | r. | _ | | _ | | | | _ | | _ | | 1.5 | | ditio | | | | | | | | 1,300 | | 710 | 859 | 919 | 1059 | 200 | 1301 | | 88 | | | | | 138 | 1750 | | | _ | | ·· | | 1500 | ــــــــــــــــــــــــــــــــــــــ | _ | ₹ 8
2 | | Operating conditions | | Flight Time | 1/399 | 2/400 | 3/401 | 5/403 | 101/9 | 2/2
2/2
3/3/2 | | 2/40 | 3/100 | 1/410 | 5/411 | 6/412 | 8/413 |
 | 1,45 | 2/410 | 7/4 | 5/419 | 6/1/20 | ਰ ਼ /ਪੁੱ | 0/#25 | 1/423 | 10 1/2
10 1/2 | 3/28 | 4/456 | 5/427 | 6/438 | \$ £ | | | 3/432 | | Operat | | Date | 1999 | 40 | \$ 0 | \$ \$ | 1000 | \$ \$ | 5 6 | 5 6 | 49- | 19- | 19-1 | 1-6-T | 4-4- | - 1 | | | | | | 4-6 | | | | | | | | \$ d | <u></u> | 10-6 | 100 | TABLE VII.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A FOR AN ALITTUDE OF 28,000 FEET - Continued | | | Wave | NP
NP | P
NR
P | EN POPROR | AN A | 44444444444444444444444444444444444444 | NR
NR | |------------------------------------|-----------|--------------------------------|-------------------------------|--------------------------------------|--|--|---|--| | | 4 | Io,
pos.,
lb-sec/sq ft | 0.0253 | .0234
.0147
.0189
.0162 | . 0152
. 0152
. 0203
. 0290
. 0195
. 0195
. 0195 | .0152
.0178
.0178
.0151
.0215
.0173 | .020
.020
.026
.0210
.0210
.0247
.0247 | .0197
.0176
.0183 | | | Station | Δto,
pos.,
sec | 0.051
0.956
0.956 | 959
946
956
750 | 948
950
950
950
950
950
950 | 8.44.48.48.48. | 9.000.000.000.000.000.000.000.000.000.0 | .050
.050 | | | S | Δp ₁ ,
lb/sq ft | | 1111 | | | | !!!! | | | | ΔΦο,
1b/sq ft | 1.13 | 1.32
.72
.85
1.04 | 9.1.
1.28.88.
1.25.69. | 8.
19.
19.
19.
19.
19.
19. | 1.56
1.56
1.60
1.88
1.88 | .63 | | ಹ | | Wave | F E F | 88 | NA NA OR | RNNNNGGG | K SKUK K | RNNA | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0355
.0357
.0312 | 4520.
4520.
4720.
4720. | .0273
.0231
.0304
.0263
.0303
.0303 | . 0228
. 0228
. 0220
. 0220
. 0260
. 0313 | | .0266
.0243
.0278
.0227 | | seure s | Station | Δto,
pos.,
sec | 0.0
440
0.030 | \$233 | 44884488 | 0.00 4 0.00 4 4
0.00 4 0.00 4 4 | 4 246484 | 949.
749.
169. | | boom pre | S | Δφ ₁ ,
lb/sq ft | | | | | | 1111 | | Sonic | | Δp _o ,
lb/sq ft | 2.15 | 1.08
1.38
1.87 | 1.28 | | 21.1
1.5.1
1.98
1.98
1.98
88. | 1.32 | | | | Wave | RN
NR | R E F | K K K K K K K K | | EN E | EN EN EN | | | τ | Io,
pos.,
lb-sec/sq ft | 0.0209
.0184
.0198 | .0293
.0273
.0223 | . 0252
. 0228
. 0164
. 0265
. 0236
. 0187 | .0248
.0276
.0299
.0252
.0255
.0275 | .0260
.0231
.0219
.0268
.0247
.0379 | .0245
.0258
.0258 | | | Station 1 | Δto,
pos.,
sec | 0.051 | 8.45.9
8.45.9 | \$ 9 8 8 9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 | 99999999999999999999999999999999999999 | 99999999999999999999999999999999999999 | 9828 | | | S | Δφ1,
lb/sq ft | 0.51
94.
94. | ċċşċ | 84.5688 | 3,7,6,7,6,7,6,6 | | | | | | Δp _o ,
lb/sq ft | | 1.80
1.03
1.10 | 1911
1888
1885
1885
1885
1885
1885
1885 |
38.
1.38.
1.38.
1.1.1.
1.35.
1.1.1.
1.35.
1.1.1.
1.35.
1.1.1.
1.35.
1.1.1.
1.35.
1.1.1.
1.35.
1.1.1.
1.35.
1.1.1.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35.
1.35. | 1.15
1.09
1.09
1.09
1.72
1.52 | | | | | Cloud Precip-
cover itation | None
None
None | None
None
None | None
None
None
None
None
None | None None None None None None None | None
None
None
None
None
None | None
None
None | | ther | | Cloud | 0 = = | ⊕ = ⊖ = | ⊖ ≂ ⊖ = × = ○ ¤ | 12174261 | | | | Weat | Charleson | winds,
knots | 190/15
200/20
200/20 | 180/18
180/18
180/16
180/16 | 160/13
160/13
190/20
200/30
200/30
200/30
200/30 | 280/10
280/10
280/10
280/10
280/10 | 240/6
350/10
350/10
350/10
310/10
310/10 | 200/8
200/8
200/15
200/15
200/15 | | | 00 00 mil | temp., | 79
88
69 | 3448 | 65
65
65
65
65
65
65
65
65
65
65
65
65
6 | 27888 | 7266655 | 38% | | suo | | Mach | 2.1
2.1
2.5 | 4444 | uqqqqqqq
vvvvvvvv | | | 2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | | nditi | | Time | 919
0011
9111 | 1230 | 2888
1119
1259
1259
1259 | 659
219
219
219
219
219
219
219
219
219 | 700
959
919
1120
1130
1319 | 929 23 | | Operating conditions | | Flight Time Mach | 5/475
6/435 | 4/442
5/443
6/444
7/445 | 1/446
2/447
3/448
4/449
5/450
6/451
6/452 | 1/454
2/455
3/456
4/457
6/459
1/460
8/461 | 2,468
3,468
3,468
4,465
6,467
1,468
8,469 | 1/470
2/471
3/472
4/473 | | Operat | | Date | 4-10-64
4-10-64
4-10-64 | 4-11-4
4-11-4
4-11-4 | 4-12-64
1-12-64
1-12-64
1-12-64
1-12-64
1-12-64
1-12-64
1-12-64 | 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 44-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 | 4-15-64
4-15-64
4-15-64
4-15-64 | TABLE VII.- SUMMARY OF SONIG-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE A FOR AN ALITYUDE OF 28,000 FEET - Continued | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | |------------------------------------|-----------|---|---------------|---------|-----------------|------------|----------------|----------|--------------|---------|--------------|----------|--------|----------|---------|------------|--------|---------|---------|---------|-------------|-------------|--------|---------|---------|-----------|---------|---------|-------------------------------| | | | Wave
shape | E E | ¥ æ | υ¢ | s ps | E E | æ | æ | P 8 | ξp | • | i | 1 | ! | Ę | Ė | œ | n: | Æ | E i | ž | | 1 | | 1 | ŧ | | | | | 4 | Io,
pos.,
lb-sec/sq ft | 0.0200 | .0213 | .02450.
0410 | 0210 | .0106 | 5410. | .0156 | .0221 | 1010 | .0148 | | 1 | | 7000 | .0227 | .0172 | .0190 | .0103 | 00100 | , ott. | 9700 | .0085 | +700· | .0051 | 1 | | | | | Station ! | Δto,
pos.,
sec | 0.050 | 9.6 | 9 6 | 500 | 88 | 470· | .07. | 9 6 | 0.00 | 1,8 | | - | - | .055 | 5,5 | 650. | 90. | 980. | 020 | 150. | 9.5 | 3 | ₹. | .032 | 1 | - | | | | 35 | Δp_{\odot} , Δp_{L} , $\Delta p_{\rm sq}$ ft $\Delta p_{\rm sq}$ ft | | | ; | | | 1 | į | 1 | | | } | ! | 1 | | 1 | ! | | ł | 1 | ļ | | | - | ! | } | ! | !! | | | | ∆p _o ,
lb/sq ft | 0.87 | .52 | 1.02 | 42 | 3. Ľ | ‡ | ę <u>†</u> . | 99 | 8 % | 64. | 69. | .76 | 1.17 | ţ. | 9 | 3. | .51 | .82 | 6 | i, | ,
, | ;
; | .52 | т. | 1 | į | | | | | Wave | DC C | ĸΖ | z | , £ | π E | Đ. | z | z | - | N K | Ŋ | NP. | e s | = C | ρ | υ | ρς | Д | Ωų į | x; f | 4 2 | MR. | NR | ρ, | NR | N C | x px | | Souic-boom pressure signature data | | Lo,
pos.,
lb-sec/sq ft | 0.0297 | 1720. | 7050 | 9630 | .0283
.0207 | .0266 | .0301 | .0236 | 1210. | . 024go. | 0270 | .0286 | 6420. | | 12.5 | 6420 | .0298 | .0342 | .0207 | 2 tao: | 885 | .0209 | .0130 | .0172 | 1620. | .0229 | .0233 | | seure si | Station 3 | Δto,
pos.,
sec 1 | 0.048 | 5.5 | | 38 | 3.6 | .043 | , † † | 3.8 | 5,8 | . t. | 140. | 041 | 9.0 | 1 0 | 5 - 5 | 3 | .050 | 770. | .027 | 8.5 | 0.5 | - 620 | 940 | 942 | .053 | 9 | .059 | | -boom pre | St | ⊅₁,
lb/sq ft | 1 | | | ! ! | | | i | 1 | i | | 1 | ; | 1 | | | | - | ļ | - | 1 | | | ; | - | | ! | | | Sonic | i | Δp _o ,
lb/sq ft | ήτ . τ | 1.53 | 1.35 | 1.53 | 1.15 | 1,97 | 1.52 | 1.16 | 17. |
 | 1.38 | 1.81 | 1.32 | 4.5 | £ 6 | 0.0 | 1.19 | 2.54 | 1.9 | 년
년
년 | ÷ ; | 1.27 | .63 | 1.72 | 1.18 | 1.59 | φ. | | | | Wave
shape | N. | ž ĸ | E E | A R | E | £. | Ŗ | Ę, | ب ر 2 | × K | ¥. | N. | Æ, | ×ρ | G D | N. | Æ | N. | NR | N. | ٠, Ē | K K | д | M | ρĸ | z | nc nc | | | _ | Io,
pos.,
lb-sec/sq ft | 0.0220 | .0266 | .0245 | 0000 | .0261
.0259 | 5680 | .0218 | 1120. | 7520. | .0225 | 9760 | .0236 | \$ c | 1010 | 0050 | .0253 | 6120. | 7810. | 8420. | 9880. | 0 a | 7220 | .0230 | .0232 | .0286 | .0215 | . 02450 | | | Station 1 | Δto,
pos., | 0.049 | 3.5 | 5.5 | 5.5 | 3.5 | 2 | 245 | ₹. | 3.5 | કું | Q. | .050 | ₹. | 5 | 5 6 | 5 | .030 | 640. | 9
8
9 | 840 | 3 3 | 5 5 | 45 | o.
₹0. | 840 | ₹ | 9.
2.0. | | | St | Δφ ₁ ,
lb/sq ft | | 11 | ŀ | | 11 | ŀ | - | ł | ł | | 1 | } | } | ł | } | | } | 1 | 1 | ! | ; | 1 1 | ; | 1 | ł | ł | | | | | Δp _o ,
lb/sq ft | 1.01 | 2.8 | 78. | ŝ.E | 1.16 | 7. 27 | 1.13 | 1.13 | 1.77 | , %. | đ | 1.03 | 8, | ያ የ | ė, | | 1.05 | 88. | 1.06 | 8: | 9 % | 9,8 | 1.56 | ъ. | ę. | 1.23 | 7.00 | | | | Cloud Frecip-
cover itation | None | None | None | None | None | Mone | None | er | | Cloud | 0 | π = | = (| 9 = | | æ |) = | | = 1 | 9 = | | | Ф | - (| ∌ : | • | - | = | 2 | 0 | = 6 | ∌ = | - | 'n | θ | = . | θ = | | Weath | | winds,
knots | 200/17 | 200/17 | 200/18 | 180/17 | 180/18 | 180/15 | 180/15 | 180/14 | 180/14 | 180/13 | 71/071 | 170/13 | 180/15 | 180/15 | 91/061 | 180/15 | 180/14 | 190/20 | 190/20 | 200/52 | 200/20 | 180/18 | 180/20 | 180/20 | 180/15 | 180/15 | 180/18
180/18 | | | , | temp., winds, of knots | 99 | 88 | 8 | £, | 2 6 E | 75 | - 67 | 72 | ₹. | 26 | 5 | 88 | 2 | C : | ± ⊭ | 292 | 92 | 69 | 69 | 2 | 21 | 5 £ | 7,6 | 1/2 | 8 | 8 | 88 | | Suc | | | | | | | 111 | | | - | | 5: | | _ | | | | 7.5 | | | | | | | | | | _ | i.i. | | conditions | | Time Mach | 700 | 8 8 | 980 | 35 | 1300 | | | | | 1319 | | | | 86. | | | 1320 | | | | | 5 E | | | | | 8 5 | | | | Flight | 1/474 | 2/475 | 1/4 | 5/478 | 7/480 | 1 /482 | 2/483 | 3/18 | 4/485 | 6/487 | 1/488 | 2/489 | 3/490 | 1,449 | 7,47 | 44/2 | 8/495 | 1/496 | 2/497 | 3/498 | 4/48 | 32/2 | 7/502 | 8/503 | 1/504 | 2/505 | 3/506
4/507 | | Operating | | Date 1 | 49-91-4 | 19-91-1 | 1-16-64 | 4-16-64 | 4-16-64 | 17.60 | 17-6 | 4-17-64 | 4-17-6 | 1-17-9 | 18-64 | 4-18-64 | 4-18-64 | 19-9- | - 07-1 | 19-01-1 | 4-18-64 | 4-19-64 | 4-19-61- | 4-19-64 | 1-19-6 | 40-01-1 | 19-61-1 | 4-19-64 | 4-20-64 | 19-02-1 | \$ \$
\$
\$
\$
\$ | TABLE VII. - SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE A FOR AN ALTITUDE OF 28,000 FEET
- Continued | 1 | 41 41 | | | | | | | |---------|-------------------------------|----------------------------|--|--------------------------------------|---
--

---| | | - 4 | | EN EN EN EN EN | R P P R | N N N N N N N N N N N N N N N N N N N | E E E E E E E E E E E E E E E E E E E | 44 4 | | 4 | Io,
pos.,
lb-sec/sq ft | | 0.0193
.0181
.0206
.0221
.0194 | .0109
.0244
.0213
.0243 | .0181
.0238
.0194
.0221
.0186
.0192 | 4,10.
1018
1019
1010.
1010.
1010.
1010. | .0248
.0273
.0190
.0221
.0184 | | | Δt ₀ ,
pos., | | 0.047
0.050
0.050
4.00
4.00
0.033 | .060
.036
.039 | 44.00.00.00.00.00.00.00.00.00.00.00.00.0 | 9.00 4.00 9.00 9.00 9.00 9.00 9.00 9.00 | 250.
150.
150.
150.
150. | | Ś | Δ ₁ ,
1b/sq | 111 | 111111 | | | | !!!!!! | | | Δ ₀ ,
1b/sq ft | | 0.89
1.05
1.05
.87
.87
.87
.87 | 14.
18.1
86.1
88. | 81.1.
85.
72.
72.
73. | 3.4.2.9.9.9.0.0 | 9.4.
8.4.2.
8.4.2. | | | Wave | N N N | N N N N N N N N N N N N N N N N N N N | AN AN AN | N N N N N N N N N N N N N N N N N N N | K N N N N N N N | N N N N N N N N N N N N N N N N N N N | | 3 | Io,
pos.,
lb-sec/sq ft | 0.0193 | .0282
.0286
.0250
.0256
.0191 | .0196
.0259
.0224
.0296 | .0235
.0235
.0236
.0296
.0196
.0196
.0213 | 20192
10327
1450.
1650.
1650.
1750.
1750. | .0293
.0293
.0296
.0197
.0198 | | | Δt _o ,
pos., | 0.041 | 949.00.00
5.00.00.00 | \$9.95
7 | \$250.95
\$250.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.95
\$350.9 | 222222020
7405000 | 9.93.9.8.9
4.88.9 | | Ś | ∆p ₁ ,
lb/sq ft | | | 1111 | | | | | | Δφ _ο ,
1b/sq ft | 1.08 | 1.18
1.03
1.18
1.18 | 1.84
1.84
1.34 | 2.1.2
8.8.6
7.5.1.1
7.5.1.1
7.5.1.1 | 1111
1021 8 4 8 12 13 | 1.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | | | Враре | M C M | M M M M M M | N N N N | M M M M M M | M M M M M M M | N C N W | | 1 | Io,
pos.,
lb-sec/sq ft | 0.0249
.0195
.0250 | .02%1
.02%2
.02%2
.02%2
.02%3 | .0216
.0234
.0236 | .0207
.0192
.0241
.0240
.0260
.0202
.0215 | .0185
.0168
.0187
.0288
.0255
.0250
.0250 |
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005
1,005 | | ation | Δt _o ,
pos., | 0.0
6.45
1.49 | <u> </u> | 9999
17000 | 32332528 | 8655568
801-97000 | £338££ | | St | ∆p ₁ ,
lb/sq ft | 111 | 111111 | 1111 | 11111111 | 11111111 | 111111 | | | ∆Po,
lb/sq ft | 1.13 | 1.33
1.33
1.82
1.42 | :;
::; | 98.3.
82.4.
7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | 488841148 | i.i.i.i.
などびがずど | | | Precip-
itation | None
None
None | None
None
None
None
None | None
None
None | GF
GF
None
None
None
None | None None None None None None | None
None
None
None
None | | | Cloud | ⊕ = ⊖ | 0 = 0 = = = | + + + = | ⊖ = ⊕ = ⊖ = ⊕ = | ⊕ = • • ⊕ <i>=</i> ⊖ = | 9 × 9 = 3 = | | Sumbace | vinds,
knots | 180/18
180/18
190/18 | 290/12
290/12
250/12
250/12
270/7 | 140/17
140/18
160/18
160/18 | 180/12
180/12
180/15
280/15
280/15
280/15 | 120/12
120/12
120/14
120/14
140/16
160/17 | 150/16
150/16
200/24
200/24
200/20
200/20 | | Surface | temp., | 446 | 884488 | 55
55
75
75 | 3\$3\$£\$\$ | &&&&#£88</td><td>&&&&&&</td></tr><tr><td></td><td>fach</td><td>2.1</td><td>uuuuuu
veesee</td><td>4444</td><td></td><td>4444444</td><td>ininini
vvvvv</td></tr><tr><td></td><td>Time</td><td>1659
1519
1519</td><td>859
1119
1239
1239</td><td>159</td><td>200
200
200
200
200
200
200
200
200
200</td><td>2889839</td><td>700
1170
11700
11300</td></tr><tr><td></td><td>Flight</td><td>5/508 1</td><td>1/511
2/512
5/513
6/514
6/515</td><td>1/517
2/518
3/519
4/520</td><td>\$467.75
\$467.75
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55
\$46.55</td><td>% 1 6 7 5 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8</td><td>2/538
2/538
5/54
5/54
5/54
5/54
5/54
5/54
5/54
5/5</td></tr><tr><td></td><td>Date</td><td>75-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6</td><td>क्र्क्रक्क्
त्त्रत्त्त्त्त्त्त्
</td><td>4444
4444
4444</td><td>444444444
444444444</td><td>**************************************</td><td>444444
\$\$\$\$\$</td></tr><tr><th></th><th>Simbore</th><th>Flight Time Mach tempt. And a kinds cover itation Δp_0, and Δp_0 Δ</th><th>Flight Time Mach Cap, Airds, cover tration at Lagran 1 and Lagran 1 and Lagran 1 and Lagran 2 and Lagran 2 and Lagran 2 and Lagran 3 4 and Lagran 3 and Lagran 3 and Lagran 4 and Lagran 3 and Lagran 4 and Lagran 3 an</th><th>Flight Time Mech temp., vinds, cover Itation Labol Precipe Labol Precipe Labol Labol Precipe Labol L</th><th> Flight Time Mach temp. Attack Line Attack Line Attack Line Attack Attack Line Attack Attac</th><th> Fight Figh</th><th> </th></tr></tbody></table> | | TABLE VII. SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE A ## FOR AN ALLTITUDE OF 28,000 FEET - Concluded | | | Wave | EN | V W K | ۱ ۱ | | R d | ž č č | 4 K K | գգ | RESTORTE | | |------------------------------------|-----------|--|---|-------------------------|--|------------------|---------|---|---|----------------|---|-----------| | | | Io,
pos.,
lb-sec/sq ft | 0.0153
.0213
.0130 | .0177
.0236
.0219 | .0218
.0073 | .0157 | .0412 | 950.
4850. | .0363
.0353 | .0370 |
.0172
.0175
.0232
.0179
.0242
.0347 | .0258 | | | Station 4 | ∆to,
pos.,
sec l | 0.050
.056
.060
.083 | .056
.056 | 9.8.6 |)6-9; | 120. | 9.00.8
4.00.8 | 488 | 50.
54. | 87.00
67.00
67.00
67.00
67.00
67.00
67.00 | .056 | | | 25 | Δ <u>p</u> 1,
lb/sq ft | 1111 | 111 | | | | | 111 | 11 | 11111111 | ļ | | | | Δp _O ,
lb/sq ft | ŸĿŸĽ | 1.56 | 4.1. | ÷ŗ;¥ | 1.56 | | 1.22 | 2.03 | .72
.68
1.57
1.14
1.14
1.57 | 1.06 | | at | | Маvе
shape | K N K K | z a, 2 | E a E | υĸ | z d | a, B a | N A A | ပည်း | AN ON ON HEN | υ | | Sonic-boom pressure signature data | _ | Io,
pos.,
lb-sec/sq ft | 0.0251
.0223
.0199 | .0229 | 0337 | 4,00. | .0297 | 9562
9365.0
9196 | 93.65
95.05
95.05
95.05 | .0384 | . 080.
282.
282.
282.
189.
189.
189. | .0259 | | ssure & | Station 3 | Δt _O ,
pos., | 0.04
440.0
86.00.0
7.00.0 | 842 | \$ 55.8
7.7.0 | 8.8 | 5,00 | \$ 5.5
5 6.7
5 6.7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 0.02
0.02
0.05
0.05 | .050 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | o.
10. | | 2-boom pre | St | Δρ _ο , Δρ ₁ ,
1b/sq ft 1b/sq ft | 1111 | | | | | | 111 | | 11111111 | i | | Sonic | | Δpo,
lb/sq ft | 2.1.
2.5.2 | 1.62 | 8.4.5 | 1.07 | 1.23 | 9.4.
6.48 | 2.5
2.13 | 1.24 | 1.53 | 1.57 | | | | Wave | NHHH | ZZŽ | e o p | . L | | E P4 E | NO K | μμ | ***** | Æ | | | 1 | Lo,
pos.,
lb.sec/sq ft | 0.0300
.0293
.0200
.0186 | . 0249
5120. | 0256
9250 | .0269 | 0295 | .0249
.0344
.0181 | 0297
0214
0177 | .0261 | . 0264
. 0153
. 0193
. 0193
. 0193
. 0215
. 0215
. 0215 | .0241 | | | Station 1 | Δt _O ,
pos., | 9.95.
54.85. | 24.5 | 853 | 583 | 9.9 | 8.8.8. | 346 | ₹.
130. | \$33\$\$\$\$\$\$
vvv-46 | ·045 | | | St | Δ _{Po} , Δ _{P1} ,
1b/sq ft 1b/sq ft | 1111 | 111 | | | | | 111 | | | 1 | | | | | 35.1
88.8
88. | 965 | 1.68 | 1.49 | 1.29 | 5.45 |
80.1
82.1 | 2.00 | 48.
88.
17.
17.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18 | 1.0 | | | | Precip-
itation | None
None
None
None | None | None | None | None | None | None
None | None | None None None None None None | None | | Jer. | | Cloud | 0 * * * | 0 = = | - 0 - | θ = | 0 = | | | - | 0 = = = 0 = = = | € | | Weath | 9 | winds,
knots | 190/15
190/15
230/20
230/20 | 250/12 | 71/015
71/017 | 310/21
310/21 | 71/062 | 300/30 | 330/82 | 1/020
050/t | 150/8
150/8
170/12
170/12
170/15
140/15 | 140/15 | | | | temp., | 965
66
79 | 2.4 | 3886 | 24 <i>E</i> | \$ £ | 884 | 3882 | 48 | 34546555
3436 | 19 | | Suc | | Mach | 25.44 | | ,,,,, | | | | 1111 | 5:1 | uninini
eninini
eninini | 1.5 | | nditic | | Time | 859
1059
1119 | 659 | 1629 | 1385 | 700 | 885 | 1239 | 1101 | 659
719
859
919
1059
1120
1300 | 919 | | Operating conditions | | Flight Time | 1/243
2/243
1/245
1/245 | | 1,4 C | | | | 6/560
1/561
8/562 | 5/567 | 2/569
2/570
2/572
4/572
6/573
8/573
8/573 | 4/580 | | Operat | | Date | \$5-8-6-
\$1-2-8-6-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 4-21-4 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 1-81-6 | 4-88-64 | \$ \$ \$
\$ \$ \$ | \$ \$ \$ \$
\$ \$ \$
\$ \$
\$ \$
\$ \$
\$ \$
\$ \$
\$ \$
\$ | 4-8-4 | 55555555555555555555555555555555555555 | 5- 1-64 | | | _ | | | | | | | | | | | | table viii. - summary of sonic-boom data for various flights of airplane a for an alithdde gange of 26,000 to 27,000 feet | | | _ | | | | | | | | | | | |----------|---|--|---|--
--|---|--
--|--|---|---
--| | | Wave | | z | . E | գ, գ, | R K P R | W W | nc. nc. | M M | A | | NR
R | | | I _o ,
pos.,
lb-sec/sq ft | | | | | .0037
.0155
.0229 | .0178
1710. | .0185 | 5710. | .0209 | | 0.0184 | | tation 4 | pos. | | 440.0 | .052 | 33 | <u> </u> | 950. | 7.26. | 9,8 | 926. | | 0.048 | | Ś | ∆p ₁ ,
lb/sq ft | | 0.32 | ,8;
(%) | 8% | 88.84. | g %.4 | ių | | | | જું. | | | ∆p _o ,
lb/sq ft | | 1.18 | 8 | 1.21
1.51 | 71:
72:1
04: | 16. 5. K | .69 | 2 7 | 2.57 | | 0.65 | | | Wave | | z ģ | E E | g K | P | N N N | <u>α</u> | ac, ac | E | | za | | 3 | Io,
pos.,
lb-sec/sq ft | | | | | .0173
.0238
.0181 | .0271 | .0218 | 7910 | .0361 | | 0.0239 | | tation | Δt _o ,
pos.,
sec | | 0.041 | 9. | 9.9.
2.9. | .051
.037
.028
.028 | .039
242 | .041 | 50.
60.
60.
60.
60.
60.
60.
60.
60.
60.
6 | 9 6 | | 0.0
7.49. | | S | ∆p ₁ ,
lb/sq ft | | 0.50 | - 60 | 84. | 43. E.E | ¥ & 2 | 18 | 1 1 | | | 0.43 | | | Δp _o ,
b/sq ft | | 1.61 | 15. |
88. | 1.18 | 1.48 | 8 8 | 69. | 1.83 | | 1.42 | | | Wave
sbape | feet | N E | Ŕ | n p | K K K K | AN AN | E a | er d | щщ | feet | 贸货 | | | I _o ,
pos.,
lb-sec/sq ft | 27,000 | 0.0217 | .0255 | .0205 | .0156
.0197
.0218 | .0184
.0268 | .0279 | 040. | 0202 | 26,000 | 0.0233 | | tation] | Δt _o ,
pos., | | 0.038 | .039 | 9.9. | 4.44.4 | 4 45 | 4 8 | 1.00. | 88 | | 2.9 | | Ċ | ∆p ₁ ,
lb/sq ft | | 0.5
12.5 | 8, | 5.
5. | <i>8</i> .8853 | 04. | 24. | | | | 17.0 | | | Δp _o ,
lb/sq ft | | 1.24 | 1.46 | 8.1. | 8,8,8,7 | g. 1. | 1.15 | 1.9.5 | 1.86 | | 01.10 | | | Precip-
itation | | None | None | None | None
None | None
None | None | None | None | | None | | | Cloud | | θ= | * | θ = | () = = = | - O = | | | = 5 | | 0 = | | | winds,
knots | | 21/021 | 170/17 | 160/16
160/16 | 310/7
310/7
310/30 | 320/26
340/10
360/10 | 350/10 | 280/15 | 180/14 | | 360/10 | | Sumbana | temp., | | 95 | 67 | 26 | 2222 | ন ধ8 |) | ب _{اگ} ة | 88 | 1 | 8% | | | | | 1.7 | 11 | 1.5 | 1.57 | 1.5 | 7. | 4. | i i i i | | 1.5 | | | Time | | 86 | 113 | 1339 | | | 1188 | 85 | 1128 | | 98 | | | Flight | | 1/8
1/8
1/8 | 6/286 | 7/287
8/288 | | | 1/208 | 4/596 | 16/28/ | | 3/297 920 1.5 | | | Date | | 3-18-6
49-61-7 | 7-18-6 | 3-18-64
3-18-64 | \$\$\$\$\$
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 3-8-6 | 4-12-7-12-7-12-7-12-7-12-7-12-7-12-7-12- | | | | 3-13-6
43-13-64 | | | | Flight Time Mach temp., knots cover itation Apply Appl | Flight Time Mach temp., winds, cover itsize to the proof of | Flight Time Mach temp., winds, cover itetion Ap., Ap., Ap., Ap., Pos., Pos., Pos., Ap., Ap., Ap., Ap., Ap., Ap., Ap., Ap | Flight Time Mach temp., winds, cover itation A process and the | Flight file Mach temp, winds, cover itention Δp_0 , Δ | Flight Time Mach temp., winds, cover itation A temp. t | Flight Time Mach temp., winds, cover itation $\frac{1}{10}$ | Flight Time Mach temp. And | Flight Time Mach tenger, with the Surface Sur | Flight Time Man temp. Line and the proof of | Flight Time Mach Surface S | TABLE IX.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE A ### FOR AN ALTITUDE OF 24,000 FEET | 7 | | Wave | R. | ¥. | | ! | | <u>a</u> | E. | Æ | N. | —
с, | N. | - | z | ; | ! | NR | ; | ; | œ | ρ, | |------------------------------------|------------|--|--------|--------|----------|--------|----------|----------|-----------|--------|----------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | 1 | | | | | _ | _ | | | _ | _ | _ | | | | | | _ | | | | | | - | Io,
pos.,
lb-sec/sq | 0.0203 | .0189 | .020 | .0190 | .0160 | .0195 | .0175 | .022 | .0261 | .019 | 020. | .018 | .0161 | | .0328 | .0201 | .0267 | .020 | .0155 | 980. | | | Station 4 | Δt _o ,
pos., | 0.052 | 9. S | 3 | .138 | ું. | .059 | .33 | 090. | ₹. | 90. | .05 | ė, | .057 | 1 | .059 | .053 | 940. | 940. | .63 | .050 | | | <i>S</i> . | Wave Δp_0 , Δp_1 , shape $1b/sq$ ft $1b/sq$ ft | i | 1 | <u> </u> | i | ! | ; | ! | | <u> </u> | | 1 | 1 | : | ; | i | ļ | 1 | : | ! | : | | | | Δp _o ,
lb/sq ft | 0.88 | 76 | \$ | ま | 1.02 | .65 | 64. | ٠. | 1.07 | .39 | 82. | .80 | .72 | | 7.0 | 66. | 1.12 | ġ | 54. | 5.08 | | 1.8 | | маvе
sbape | | | XX. | ж | × | pc | Æ | Æ | Ĕ | œ | × | ρς | z | œ | z | - | œ | Æ | æ | ρς | | Sonic-boom pressure signature data | 3 | Io,
pos., | 0.0251 | -0247 | TC0: | .0203 | .0213 | .0237 | .0212 | .0237 | .0277 | .0263 | .0245 | .0187 | .0268 | .0177 | .0258 | 0830 | 0120. | .0280 | .0238 | 6420. | | essure | Station 3 | Δt _o ,
pos., | 0.040 | 5.5 | <u> </u> | .055 | | .055 | ₽
6±0- | 9,0 | .039 | 9. | £ | 939 | 42 | .051 | 0.0 | 8 | .05 | .030 | .052 | કું | | -boom pr | S | Wave $\triangle p_o$, $\triangle p_1$, shape $1b/sq$ ft $1b/sq$ ft | | ŀ | | 1 | | } | ; | ; | 1 | 1 | ; | | ļ | į | } | 1 | 1 | ! | ; | ł | | consc | | Δp _o ,
lb/sq ft | 1.43 | 98 | 7.55 | 68. | 1.19 | % | 1.30 | 1.03 | 7.7 | 1.16 | 1.30 | 5 | 1.55 | 1.01 | 1.33 | 1.56 | F. | 1.40 | 8. | 6. | | | | Wave | | œ: | 2 | z | E E | z | Ē. | Æ | ď | E. | z | æ | W. | Ð | œ | z | æ | Ы | œ | ď. | | | 1 | To, I | 0.0266 | 120. | .0250 | 7450. | .0253 | .0277 | .0223 | .0233 | 980. | .0193 | .026 | 0420. | .0257 | .0326 | .0195 | ±860. | .0286 | .0282 | .0253 | 0270 | | | Station 1 | Δt _o ,
pos., | 0.046 | ş. | 9 | .051 | ₹. | 840. | .030 | .65 | Ę. | ₹. | .050 | .055 | 9€ | 770. | 45. | 940. | .057 | 640 | .621 | 9 | | | 8 | Δp _o , Δp ₁ , lb/sq ft | - | ł | ļ | 1 | 1 | | ł | 1 | 1 | ! | 1 | ; | 1 | ļ | | ; | ļ | ; | ; | į | | | | Δp _o ,
lb/sq ft | 1.41 | £, | 1.16 | 1.49 | 7.66 | 1,27 | 1.7 | .97 | 1.62 | 1.23 | 1.13 | 8 | .95 | 7.5 | 9. | 1.30 | 76. | 2,19 | .67 | 1.62 | | | | Cloud Precip-
cover itation | None | Je r | | Cloud | ⊖ | - | | 0 | | • | | θ | | = | = | - | - | 0 | - | | = | = | z | 2 | | weather | | Surface
winds,
knots | 140/13 | 140/13 | 140/15 | 91/091 | 91/091 | 150/15 | 150/15 | 180/14 | 180/14 | 190/17 | 190/17 | 160/22 | 160/22 | 160/18 | 160/18 | 180/18 | 180/18 | 180/20 | 180/20 | 160/24 | | | | Surface Surface
temp., winds,
oF knots | 57 | :የኢ | 99 | 99 | 29 | 89 | 69 | #2 | 3. | 8 | 8 | đ | ಹೆ | 2 | 7 | 2 | 72 | 1/2 | 92 | 16 | | 800 | | | 1.5 | 1.5 | 1.5 | 1.3 | ٦.
۲. | 1.4 | 7.7 | 7.7 | 1.5 | 7.7 | 1.5 | 7 | 7: | 1.1 | 1.5 | 1.5 | | 1 | 1.5 | 1.5 | | nditic | | Time | 1 | 719 | | | 719 | | _ | _ | _ | _ | | | 1319 | | 720 | | | _ | | 1258 | | ing con | | Flight Time Mach | 1/577 | 2/578 | 3/579 | 1/593 | 2/594 | 1/600 | 2/601 | 3/602 | 1,/603 | 5/604 | 6/605 | 2/606 | 8/607 | 1/608 | 5/609 | 3/610 | 1/61 | 5/612 | 6/613 | 7/614 | | Operating conditions | | Date | | 7 1-6 | | | 5- 3-64 | | | | | | | | 5- 4-6 | | | | | | | 5-7-6 | TABLE X.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHENS OF AIRPLANE A FOR AN ALITHUDE NAMES OF 21,000 TO 25,000 FEET | | | Wave
враре | | - K K | TH A TH A A | RHRNN | | R
NYR
R
R | |------------------------------------|-----------|--|-------------|--------------------------------------|---
--|--------|---| | | † | Io,
pos.,
lb-sec/sq ft | | 0.0118
.0086
.0194
.0185 | .0208
.0263
.0229
.0268
.0264
.0253 | .0123
.0177
.0160
.0202
.0317
.0220 | | 0.0197
0.036
0.019
0.019
0.051
0.077 | | | Station | Δt _o ,
pos., | | 0.078
.062
.065
.052 | 44.04.04.04.04.04.04.04.04.04.04.04.04.0 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.00 | | 0.056
.056
.072
.079
.078 | | | S | ∆p ₁ ,
lb/sq ft | | 1111 | | | | 111111 | | | | Wave Δp_o , Δp_1 , shape $1b/\epsilon q$ ft $1b/\epsilon q$ ft | | 0.32
.23
.50 | | .39
.41
.83
.95
1.19
1.02 | | 4.0
4.0
4.0
5.0
5.1 | | ta | | | | m EE | KERK LEKK | K K K K K K K K | | RN R R R | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft |
! | 0.0129
.0141
.0243
.0301 | .0188
.0272
.0296
.0297
.0203
.0295
.0261 | .0208
.0339
.0247
.0287
.0292
.0296
.0236 | | 0.0267
0.029
0.026
0.045 | | essure | Station 3 | Δt _o ,
pos., | | 0.042
.055
.037
.033 | \$5.55.55.55.55.55.55.55.55.55.55.55.55.5 | 450.050.050.050.050.050.050.050.050.050. | | 0.039
.033
.033
.032
.032 | | -boom pr | Ċ | 12,
13,84 ft | | 1111 | | | | 111111 | | Sonic | | Wave Δp_o , Δp_1 , shape $1b/8q$ ft $1b/8q$ ft | 1 | .88.
11.1 | 11:0:1:0:1:0:1:0:1:0:1:0:1:0:1:0:1:0:1: | 1.07
1.05
1.19
1.86
1.86
1.86
1.86 | | 1.92 | | | | | feet | OKKO | M.W.R. | NENZE KER | feet | N K K K C K | | | 1 | Io,
pos.,
lb-sec/sq ft | 23,000 feet | 0.0165
.0180
.0327
.0239 | 0302
9290
4880
0360 | .0278
.0301
.0384
.0288
.0265
.0259 | 21,000 | 0.0272
0.0247
.0235
.0335
.0275 | | | Station | Δt _o ,
pos., | | 8.48.8 | 0550 | 9399999
74999 | | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | | Ś | Δp _o , Δp ₁ ,
1b/sq ft 1b/sq ft | | 1111 | | | | | | | | | | 9.4
1.39 | 11.07 | 45835834
4444444444444444444444444444444 | | 11. i.i.i. | | | | Cloud Precip-
cover itation | | шшшш | None None None None None None | None
None
None
None
None
None | | LL None None None None | | er | | Cloud | | 8: - • | 0:0:0:0: | ⊖ = ⊖ = = = = = | | # = = = | | Weather | 9 | temp., winds, oF knots | | 160/14
160/14
160/16
140/18 | 140/9
140/9
180/12
190/12
190/12
150/12
150/12 | 180/7
180/7
210/15
220/10
220/10
190/14
190/14 | | 170/12
170/12
160/12
160/15
160/15 | | | | temp., | | 5
4
5
5
5
7
5
7 | 4%202542F | 28468588 | | 556666 | | sno | | Mach | | 2.1.1.1 | unininini
unininini | uquququ
nonnnn | | | | nditi | | Time | | 1100
1119
1529
1520 | 700
900
1100
1200
1200
1200
1200
1200
120 | 982
1659
1659
1719
1719 | | 659
719
821
1188 | | Ing co | | Flight Time Mach | | 5/581
6/582
1/583
8/584 | 1/28/2
2/586
2/584
5/589
1/591
6/590 | 1/61/5
5/61/6
5/61/6
5/61/6
6/62/6
6/62/6
6/62/6 | | 1/62/
5/62/
5/62/
5/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/62/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/6/
6/ | | Operating conditions | | Date | | 4444 | ~~~~~~~~~~
~~~~~~~~~~~
\$\$\$\$\$\$\$ | \$\$\$\$\$\$\$
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | \$\$\$\$\$\$\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | • | TABLE XI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE B FOR ALITITUDES OF 45,000 AND 46,000 FEET | | | Wave | | ; | <u> </u> | œ | ₽, | ט ני | 10 | , ! | z z | zz | ļĝ | # E . | z, | A z | ZZI | <u>د</u> إ | ļ p. | ပႜ | : | R P | æ | | 0 | ec | ľ | ac ac | | |------------------------------------|-----------|-------------------------------------|-------------|------|---|---|---------|------------|--|-----------|----------------------------|--------------|--------------|---|----------|--------------------------|-------------------------|------------|----------------|--------|---------|------------------|----------|--------|--------------------|---------------------|------------------|-----------------------|---| | | | ft | | - | | | | | | | | | | | | | | | | ~ | | 6.F | | | | | <u> </u> | ~ ~ | | | | 1 | Io,
pos.,
lb-sec/sq | | 1000 | - 8)
5
5 | 7
7
7 | 790. | 1 3 | 5749 | | 900 | 5.94. | .050 | | X | 8.4 | 5.47 | 395. | .08.
.04. | 7420. | · | .0339
.0437 | .0350 | | 0.0571 | .0514
79467 | .0284
.0390 | .0397
7740. | | | | Station | Δt _o ,
pos., | | 0000 | 88. | .105 | .072 | 3.5 | 9.6 | 3 | 620. | .071
.076 | 86 | 770. | 8 | 8.6. | 9.0 | | 8.8.
8.8. | .89 | 3 | 8,8 | .100 | | 0.111 | | .132 | .115 | | | | 3 | Δp ₁ ,
lb/sq ft | | | | ! | 1 | | | | | | | | | | 1 1 | | | | | | 1 | | 11 | | 11 | | | | | | Δp _o ,
1b/sq ft | | | 19:1 | .72 | ₽, 6 | R 8 | | • |
51:1 | 1.25 | 1.22 | 1.8 | | 1.46 | 1.8 | 1.1 | 2.23 | 1.49 | | .70 | .55 | | 1.3 | .41 | 1.00 | 85.¥. | | | tа | | Wave
shape | | ١ | E E | œ | £ 9 | ž c | . U A | | K z | Ž z | E | A EN | rci | N K | z z | £ £ | Ê | M E | ĺ | ∯ « | υ | | ಜಲ | μР | æ p. | 11 | | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | | 6 | 98. | ±290° | 0000 | 88 | 55.5 | - | 8
8
8
8
8
8 | 9.8
5.8 | .0523 | 5 d | .0551 | .0582
.0457 | 5.5
5.7
5.7
7 | .0559 | ₹.
₹.
₹. | .0513 | ţ | .e93 | 5490. | | 0.0507 | .0469
.0531 | .0614
.0499 | .0537 | | | sesure s | Station 3 | Δt _O ,
pos.,
sec 1 | i | - | 38. | = | .072 | 0.60 | 8.8 | } ; | 88 | 8.8 | 980 | <u>.</u> \$ | 8 | 070 | .073 | \$,8 | .103 | 070 | 2 | 986. | .072 | | 0.126 | .073 | 970. | .963 | | | -boom pre | 83 | Δp ₁ ,
lb/sq ft | | | | 1 | 1 | | | } | | | ł | | - | | | | | ! | ŀ | | 1 | | | | | | | | Sonte | | Δp _o ,
lb/sq ft | | | 1:12 | ಪ್ | 1:3 | 7.4 | ដុ | • | 13 | 7.1
81.1 | 04.1 | | .67 | 4.1
1.2
1.2
1.3 | 186 | 1.85 | 1.7 | 4.5 | ķ | 98.
98. | 2.10 | | 0.91 | 3.89 | 1.82 | 1.38 | • | | | | Wave | feet | | ž ž | E | 5 | ž ž | 0 8 | ĺ | ű z | E z | £ 6 | <u>چ</u> | z | N N | ¥ £ | M M | i Ki Ki | z, | 5 | ል የፍ | NR | feet | ပပ | æ ₽ | υĸ | es es | - | | | | Io,
pos.,
lb-sec/sq ft | 46,000 feet | | 25.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
1 | 0550 | | 865 | 3 8 | · | 845.
1945. | .e. 25. | . 643
693 | 5.05
5.05
5.05
5.05
5.05 | .0397 | 9.95
1879 | 18 | ર.
જ દ | 8.8.
19.8. | 55.5 | 2 | .0530 | .0533 | 45,000 | 0.0199
.0440 | .0205 | .0516
.0316 | 50±0. | | | | Station 1 | Δt _O ,
pos.,
sec | | ľ | 980. | .083 | | 8,4 | 8 | V | Ė.8 | .072
.072 | 8 | 3.8 | 640. | .079 | 3,6 | 90.6 | 8.9 | 8, | 3 | .077
.100 | -082 | | 0.107 | , 48. | 108 | 01. | : | | | <i>∞</i> | Δp ₁ ,
lb/sq ft | | | | į | ! | 1 | | ! | | | | | 1 | | | ! ! | | 1 | ŀ | | ŀ | : | 11 | | | | | | | | ∆po,
lb/sq ft | | | 2.5 | 1.38 | | 8.8 | 1.42 | ţ. |
9 | יוינ | 188 | 8.6 | 1.22 | 1.27 | 1.0
1.0 | <u>1</u> 2 | 15.8 | 1.22 | Ŗ | 2.41 | 1.28 | | 96. | 8.8 | 1.31 | 1.59 | ì | | | | Precip-
itation | - | | None 1 | None
None | None | None | None | - | | er | | Cloud | | Ī |) _z | θ | = | | • • | | θ= | θ= | = | = 0 | e | ⊕ = € | Ð = | θ - | 5 # | 0 | : | ⊕ = | θ | | Θ = | | = = | ₹ = | | | Weath | | Surface
winds,
knots | | | 160/9 | 180/10 | 180/10 | 200/12 | 180/13 | CT/noT | 160/5 | 200/10 | 200/17 | 180/9 | 180/9 | 160/8 | 6/00/
8/00/
8/00/ |
200/15 | 190/15 | 180/7 | l /noT | 180/20
180/20 | 200/27 | | 200/5 | 220/8 | 21/041 | 140/5 | | | | | Surface
temp., | | - | 88 | 92 | 9, | 86 | 288 | y , | 5 % | ත් රි | -80 | 38 | 8 | 67, | e E | 68
68 |
ස්ක්ක් | 67 | 8 | ಪೆ ಪೆ | 82 | | 101 | 103 | 001 | 101 | - | | ons | | Mach | 1 | | † 4 | 4 | 7. | 4 - | | ÷ | 1.5 | ٠.
در | 1:2 | 2:1 | 1.5 | 2:5 | 2.4 | 1.5 | 144 | 1.5 | Ç; | 2:4 | 1.5 | | 1.5 | 4.1.5.5. | 1.5 | | | | onditi | | Тіле | | ľ | 3 6 | 8 | 919 | <u> </u> | 1300 | 4777 | 5 E | 8 6 | 1059 | 1.1.
8.8 | 1322 | 85.
65. | 88 | 1011 | 32.5 | 659 | | 1300
1320 | 1318 | | 1,500 | 1,300 | 12%
132 | 1300 | } | | Operating conditions | | Flight | | Ī | 2/692 | 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2 | 107/4 | 5/702 | 0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4 | <u>\$</u> | 2/706 | 3/708 | 5/2 | 17/7
24/7 | 8/713 | 2/774
2/775 | 3/716
4/717 | 5/718 | 2/18
12/18 | 1/722 | | 7/736
8/737 | 191/8 | | 7/11.97
8/11.98 | 7/1205
8/1206 | 7/1213
8/1214 | ,
7/1221
8/1222 | 1 | | Oper | | Date | | | 1000 | 19-61-2 | 5-19-64 | 5-19-64 | 47.7 | #0-6T-C | 7.8.6 | 2-8-6-8 | 18-7- | \$\$-\$
2.8
2.8
2.8
4.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5 | 5-20-64 | 4-8-6-7 | \$ \$ \$ | 40 | 444 | 5-22-6 | 5-22-64 | 5-23-6
5-23-6 | 5-27-64 | | 7-23-64 | ±9-±-2-
-5-±-2-1 | 7-18-6
1-18-6 | 7-26-64 7/1221 | } | TABLE XII.- SUMMARY OF SONIC-BOOM DAIM FOR VARIOUS FLIGHTS OF ALRFTANE B FOR ALL ALLITUDE OF 44,000 FEET | П | | Wave | R N R N R N R N R N R N R N R N R N R N | REST E | A W W W W W W W W W W W W W W W W W W W | AN A | RN R N L N L N L N L N L N L N L N L N L | N N N | |------------------------------------|-----------|--|--|--|---|--
---|---| | | : | Io,
pos.,
lb-sec/sq ft | 0.499
949.
1498.
9497.
9497.
6297. | 9492
9497
9560
9457
9455 | 8450
6549
6749
6749
6749 | . 0736
. 0491
. 0590
. 0399
. 0399 | 0446
0493
0493
0630
0630 | .0399
.0399
.949 | | | Station 4 | Δt _o ,
pos.,
sec lb | 0.101
.073
.076
.076
.441 | .091
.080
.075
.093 | .091
.087
.079
.079
.078 | 280.
270.
670.
80.
80.
670. | 079
0882
070
072
7460 | 5.6888
\$4 | | | ž | Δ ₁ ,
lb/sq ft | !!!!!! | | | 1111111 | | 1111 | | | | Wave Δp_o , shape $1b/sq$ ft | 0.81
1.52
1.79
1.79
1.54 | 2.4.5.4.
2.4.8.4.8.8.4. | \$\$4.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5
\$\$3.5 | 1.89
1.99
1.88
1.40 | 1.03
2.56
1.15
1.63
1.15 | 1.33 | | 8 | | Wave | THE AND THE SERVICE OF O | E T F F T F | H M H H H H | RENDUER | N M M M M O | 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0524
.0501
.0601
.0451
.0364 | . 25.22
. 25.39
. 25.39
. 25.39
. 17.39 | 2455
25455
25455
2660
899 | 668
668
668
668
668
668
668
668
668
668 | 9999
988
9999
7599
7599 | . 0463
949.
5415
1770. | | ssure | Station | Δt _O ,
pos.,
sec | 0.089
170
170.
087
570. | 270
267
200
200
200
200 | 888868 | 480
1880
1880
1880 | 68698888888888888888888888888888888888 | 980.
970.
780. | | -boom pre | St | Δp ₁ ,
lb/sq ft | 111111 | | 111111 | 1111111 | 1111111 | 1111 | | Sonic | | Wave Δp_o , shape $1b/sq$ ft | 1.11
1.31
2.13
1.16
1.16 | 19.19.19.19.19.19.19.19.19.19.19.19.19.1 | 55.1
54.1
59.1
1.0
1.0 | 11.5.4.11.15.15.15.15.15.15.15.15.15.15.15.15. | 1.16 | 2.37
1.19 | | | | маvе
shape | NR
NP
NP
NP
NP | NEWN | NNNRR | N N N N N N N N N N N N N N N N N N N | # E = # # # # | N
NR
NR | | | п. | Io,
pos.,
lb-sec/sq ft | 0.0596
.0559
.0537
.0565
.0561 | . 0537
. 0537
. 0530
. 0548 | .0507
.0417
.0508
.0588
.0458 | .0597
.0597
.0506
.0508
.0598
.0441 |
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55
55.55 | .0472
.0470
.0340 | | | Station 1 | Δt _o ,
pos., | 90.0
80.0
80.0
80.0
80.0
80.0
80.0
80.0 | 88888 | 970
970
870
970
970 | \$85.58899
5.08889 | 685089998 | 5,5,8,8 | | | St. | Δρ _ο , Δρ ₁ ,
lb/sq ft lb/sq ft | 111111 | 111111 | 111111 | | | | | | | Δp _o ,
lb/sq ft | 1.79
1.97
1.25
2.1.1
28. | 1.89
1.76
1.57
1.57 | 1.13 | 1.22 | 44.588.44.6
64.688.44.6 | 1.38
1.92
1.92 | | | | Precip-
itation | None
None
None
None
None | F
F
None
None
None | None
None
None
None
None | None
None
None
None
None | None
None
None
None
None | None
None
None
None | | her | | Cloud P | 0:0:== | ====0= | = = 000 = | ⊕ = = ⊖ = ⊖ = | # = = = = = | Θ 7 = 2 | | Weathe | | winds,
knots | 210/16
210/16
180/14
170/18
170/18 | 180/14
180/14
190/18
190/18
170/17 | 200/14
200/14
170/13
190/10
160/9 | 160/8
160/8
190/10
200/13
200/14
200/14 | 180/10
180/10
210/18
200/17
200/17
200/15 | 170/9
170/9
180/12
180/6. | | | 9 | temp., | 6288343 | 884488 | 888333
888333 | 17288888 | 888835 | 2 ⁴ 48 | | lons | | Mach | 444444 | 444444
22222 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2000001
2111111111 | | 4444 | | Operating conditions | - | Flight Time Mach | 学
252
252
252
252
253
253
253
253
253
253 | 1/730 700
2/731 721
3/732 859
4/733 919
5/734 1100
6/735 1121 | 1/738 659
2/739 720
3/740 923
4/741 1100
5/742 1300
6/743 1320 | 44 659
46 859
46 859
49 1119
50 1300 | 1/752 659
2/753 719
3/754 859
5/756 1059
6/757 1120
8/759 1239 | 1/760 658
2/761 720
3/762 859
5/764 1059 | | ating | | | 25/25/2
8/2/25/35/35/35/35/35/35/35/35/35/35/35/35/35 | | | 2/74
2/74
2/74
5/74
6/74
8/75
8/75 | | | | Oper | | Date | 777777
888888
88888
8888
8888
8888 | 777777
888888
444444 | ************************************** | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ************************************** | 7-21-6
7-21-6
7-21-6 | Table XII.- Summary of soutc-boom data for various filghes of airplane b for an aliftydd of μL_{ν} ood fere - concluded | | | ивvе
вhаре | N N | # KW d d | 11111 | pc pc | NE LARK | 11111111 | M M | NR - | |------------------------------------|-----------|---|---------------|--|--|--------------------|--|--|------------------|--------------------| | | | Io,
pos.,
lb-sec/sq ft | 0.0471 | .0367
.0310
.0390
.0365
.0365 | .0177
.0184
.0196
.015 | .0306 | .0445
.0618
.0505
.0507
.0641
.0463 | | .0259 | .0312 | | | Station 4 | Δt _o ,
pos., | 0.081 | .083
.130
.070
.070 | 821.
986.
987.
97.
98. | 960.
101. | 976
986
979
979
965
1115
106 | | 770. | j.
9.48 | | | St | Δp ₁ ,
lb/sq ft | | 111111 | | | | 11111111 | | | | | | Wave $\Delta P_{\rm O}$, shape $1b/{ m sq}$ ft | 1.27 | .88
.90
.90
.77
.03 | 8i4i8i
8i | 33 | 1.14
1.64
1.39
1.16
2.10
.61 | 1.69
1.30
1.81
1.62
1.31
.96
.97 | 8.6. | 1.02 | | et l | | Wave
shape | er er | NR
NR
NR
NR | E CEE | N N | * * \$ \$ \$ \$ \$ \$ | N N N N N N N N N N N N N N N N N N N | D M | x | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | 0.0513 | 9442
9367
9435
9435
951 | .0241
.0321
.0301
.0313 | .0507 | . 9486
9486
9486
9488
9488
9488
9488 | 9649
9659
9659
9659
9659
9659 | 0040° | .0428 | | esure s | Station ? | Δt _o ,
pos., | 0.073 | 989
970
970
970
889 | 463
411
468 | 88 | 966
270
200
880
770
070 | 080
070
070
070
081
081
070 | 88 | <u>\$</u> .8 | | -boom pre | St | Δp ₁ ,
lb/sq ft | | | | [] | 1111111 | 11111111 | | 11 | | Sonic | | Δp _o ,
lb/sq ft | 1.15 | 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | 4.5
5.0
80
8.0
8.0
8.0 | 1.10 | 1.72
1.28
1.28
1.72
1.72 | 1.62 | 1.32 | .91 | | | | Wave
shape | AN AN | NN
NN
NN
NN
NN | ပြက ပြ | R W | AN N N N N N N N N N N N N N N N N N N | AN NA N | cc cc | NR | | | | Io
pos.,
lb-sec/sq ft | 0.0470 | .0527
.0527
.0529
.0530
.0620 | .0419
.0351
.0208
.0199 | 0249 | . 0527
. 0481
. 0516
. 0547
. 0591
. 0542 | .0518
.0414
.0588
.0517
.0609
.0517
.0582 | -0394
-4450 | .0681
.0443 | | | Station 1 | Δt _o ,
pos.,
sec | 0.090 |
081
072
072
072 | 1.1.9.9.9.8.
1.0.9.9.8.7. | 98. | 69899999999999999999999999999999999999 | 282
270
270
200
200
200
200 | 970. | .076 | | | St | Δp _o , Δp ₁ ,
b/sq ft lb/sq ft | | | | | | 88.4.
88.6.
88.6.
88.1. | .93 | .50 | | | | Δp _o ,
lb/sq ft | 1.17 | 1.30
1.30
1.90
1.07 | .72
.63
.73
.73 | .46
1.60 | 1.09 | 1.13
1.33
1.33
1.33
1.34 | .83
1.16 | 1.08 | | | | Precip-
itation | None | None
None
None
None
None | T, EW, F
T, RW, F
T, RW, F
RW, F | None
None | -R
-R
None
None
None | None None None None None None None | es es | None
None | | her | | Cloud | ⊖ ⊖ | ⊕ = = = ⊖ | ⊕ = = = | a = | ⊕ = ⊖ = ⊖ = | 0===0=== | + = | = = | | Weathe | | Surface
winds,
knots | 180/6 | 360/16
360/16
360/10
010/8
010/8 | 080/12
080/12
090/8
090/8
100/15 | 050/10 | 020/8
020/8
030/10
030/10
020/10
040/15 | 320/8
320/8
00/0
00/0
00/0
310/3
310/3 | 030/11
030/11 | 190/10
190/10 | | | | Surface
temp.,
OF | 82
82 | 6657333 | 82222 | 88 | 525252 | 2288864
228 | 87.8Z | 22 | | Str | | | 1.5 | uuququ
vvvvv | uuiuu
veevee | 1.5 | | | 1.5 | 1.5 | | ditio | | Time | 11.19
1258 | 658
721
859
1059
1259 | 25
28
28
28
28
28
28
28
28
28
28
28
28
28 | 1300 | 780
780
982
982
1059
1351
1351 | 659
721
980
11180
1128
1559 | 658
719 | 1259
1319 | | Operating conditions | | Flight Time Mach | 6/765 | 1/768
2/770
3/770
4/772
6/773 | 2/775
2/776
3/777
4/778
5/779 | 4/783
5/784 | 1/785
2/786
3/787
1/788
5/789
6/790 | 2/792
2/793
2/795
4/795
6/796
8/799 | 2/801 | 7/820
8/821 | | Operat | | Date | 5-57-64 | %%%%%
%%%%%
%%%%%
%%%%%
% | \$\$\$\$\$
\$\dag{\alpha}\alpha | 5-30-64
5-30-64 | 777777
4444444
4444444 | \$ | 6-2-64 | 1 9-1-9 | TABLE XIII.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHES OF ALRELANE B FOR ALLITHUDES OF 42,000 AND 43,000 FEET | | | 6) di T | | | | | | | | — т | | | | | | | |------------------------------------|-----------|--|--------|------------------|-------------------------|--|---|--------------------------------------|--------------------------------|------------------|--------|--|-------------------------|------------------------------------|--|----------------| | | | Wave
shape | | 11 | 0 | P1 00 P4 | R C R R | E A O | £ £ | P
NP | | lo M | AN AN | EN EN EN | T H H H H H H | υĸ | | | | Lo,
pos.,
lb-sec/sq ft | | 0.0426 | .0861 | .0555 |
9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9. | .0518
.0318
.0401 | .0500 | .0598 | | 0.0015
.0762
.0396 | .0508
.0577
.0328 | .0315
.0310
.0374 | 9450
9450
9450
9450
9450
9450
9450 | .0339 | | | Station 4 | Δt _o ,
pos., | | 0.195 | .133 | .086
.100
 | .083
90.
109 | 080
990
990 | 770. | 4Z0. | | 0.068 | .075
.075
.133 | .072
.076
.072
.070 | 270.
889.
670.
770.
770. | 790. | | | S | ∆p ₁ ,
lb/sq ft | | 11 | | | | 1111 | | | | 1111 | 111 | 1111 | | ! ! | | | | Δp _o ,
1b/sq ft | | 94.0 | 1.99 | 1.63 | .69
1.37
1.40 | 1.19
1.99
1.99 | ;;
% | 2.2
8%.1 | | 0.06
2.64
1.32 | 1.62 | 1.02
41.16
86.1 | 1.18.93.19.39.19.19.39.19.19.39.19.19.39.19.19.39.19.1 | 1.47 | | 83 | | Wave
shape | | m | α υ | RE 1 | RMN | E E E E | N N | EN EN | | NR
NR
NR | AZZ | F F F F | N N N N N N N N N N N N N N N N N N N | SA SA | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | | 0.0362 | 7 <i>£</i> 90.
8690. | .0543 | . 0405
. 0435
. 0532
8448 | .0580
.0470
.0457
.0392 | . e 7.1 | .0490 | | 0.0488
.0537
.0458
.0458 | .0524
.0469
.0380 | .9497
.9455
.9446 | . 956
946
9483
9483
944
967
968 | .0592
7049. | | essure s | Station 3 | Δt _o ,
pos., | | 0.132 | .076
.076 | 9890. | 98.058
48.058 | \$888
\$ | 880. | .082 | | 0.09.
2087.
480. | 5.88.
6.88. | .079
.079
.088
.067 | 888882888 | .061 | | -boom pr | S | Δp ₁ ,
lb/sq ft | | 11 | | | | 1111 | | | | 1111 | | | 111111111 | | | Sonic | | Wave Δp_{O} , shape $1b/sq$ ft | | 0.5 | 1.59 | 1.08 | 4.5.4.1.1.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2.2.2 | ¥8.1.
98.1. | 1.32 | 1.47 | | 845.8 | 2.54
1.13
1.32 | 1.18 | 1.53
1.153
1.160
1.160
1.160
1.160 | 1.18 | | | | Wave
shape | 0 Feet | ac o | m | ## 5 E | E E E E | AN N N | R R | NR NR | X feet | ###################################### | EE | M M M M | E z z E z z E z z | ÆÆ | | | | Io,
pos.,
lb-sec/sq ft | 45,000 | 0.0678 | .0417
.0492 | . 0427
. 0427
. 0286 | 9520.
420.
4720.
7720. | .0388
.0371
.0348 | .0507 | .0492 | 42,000 | 0.0460
4740.
0551. | .0679
.0457
.0393 | 9.
9.418
9.0519
8.420 | .0590
.0666
.059
.059
.059
.050 | .0602 | | | Station 1 | Δt _O ,
pos., | | 0.105 | .096 | 88.48 | 5,000 | 88.89 | .076 | 990. | | 0.082
.087
.087 | 87.0
44.08 | 270.
070.
070. | 70.000
60.000
70.000
70.000
70.000
70.000
70.000
70.000
70.000 | 88.8 | | | <i>₹</i> | Δ ₂ ,
lb/sq ft | | | | | | | | | | | | 0.82
1.01
1.03 | 11.
12. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | 1.02
19. | | | | Δp _o ,
lb/sq ft | | 1.31 | 1.07 | | 25.49. | 28.
28.
26.1 | 88.
10.1 | 1.62 | | 1.39 | 1.1
40.1
86. | 1.13 | | 1.24 | | | | Precip-
itation | | None | None | None
None
None | None
None
None | None
None
None | None | None | | None
None
None | F
None
None | -RW
None
None | None None None None None None | None | | ther | | Cloud | | ⊕ # | Θ= | O # = = | | 0=== | 0 = | 2.2 | | 0 = 0 = | 0 = = | Θ=== | ⊖ = = = 0 = | Θ= | | Weath | 9 | vinds,
knots | | 230/15 | 130/12 | 230/9
230/9
220/7
220/7 | 220/15
220/15
250/7
250/7 | 140/14
140/14
130/12
130/12 | 140/8
140/8 | 180/7 | | 200/15
200/15
160/14
160/14 | 080/8
300/6
300/6 | 070/10
070/10
080/8
080/8 | 140/8
140/8
130/12
130/12
150/12
150/12
170/13 | 180/13 | | | 9 | temp., | | 88 | 900 | 4488 | 28 8 8 8 | 3388 | 88 | £8 | | 80
81
81 | 888 | 8822 | 38882288 | | | guo | L | Mach | | 1.5 | 1.5 | 2224 | 4444 | 4444 | 1:5 | 1.5 | | 4444 | i i i i | | | | | conditions | | Тіпе | | 1259
1320 | 1300 | 859
1100
1119 | 859
1100
1119 | 8861 | 900 | 1130 | | 1100
1259
1319 | 923
1100
1211 | 859
1059
1189 | | | | 1 | | Flight | | 7/1181
8/1182 | 7/1189
8/1190 | 3/1193
4/1194
5/1195
6/1196 | 3/1201
4/1202
5/1203
6/1204 | 3/1209
4/1210
5/1211
6/1212 | 3/1217
4/1218 | 6/1215
7/1252 | | 5/69±
6/695
7/696
8/697 | 1/780
2/781
3/782 | 3/802
1/803
5/804
6/805 | 1,806
2,807
1,808
1,809
5,810
6,811
1,812
8,813 | 5/818 | | Operating | | Date | | 7-21-64 | 7-22-64 | 7-3-3-4
4-3-4-4
7-3-4-4
7-3-4-4
7-3-4-4
7-3-4-4
7-3-4-4
7-3-4-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-4
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7-3-1
7- | \$-\$-\$-\
-\$-\$-\
-\$-\$-\ | 4444 | 1 2 -8-7 | 7-30-64 | | 7-18-6
7-18-6
7-18-6
7-18-6 | 7-30-6
7-30-6 | 9999
4444 | ~~~~~~~
\$\$\$\$\$\$\$\$ | 44 | TABLE XIV. - SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF ALRPIANE B ## FOR AN ALTITUDE OF 41,000 FEET | | | Wave | NR
NP | K K O O | CRR | NR NR | M. M. | ß, | Æ | R T K T T | NR RR C | RN P P RN | AN AN A | |------------------------------------|-----------
--------------------------------------|------------------|--|---|------------------|----------------|----------------|---------|--|--|--------------------------------------|--| | | 4 | Io,
pos.,
lb-sec/sq ft | 0.0415 | .0509
.0482
.0497
.0710 | .0565 | 55.49. | .0477 | .0385 | .0502 | .0491
.0491
.0385
.0521 | .0417
.0417
.0417 | 4740.
7479.
7479. | .0559
.0548
.0418 | | | Station 4 | Δt _o ,
pos.,
sec | 0.080 | .105
.072
.100 | .092 | .077 | .087 | 670. | 620. | .087
.067
.063
.068 | .081
.082
.073
.073 | 970.
730.
730. | 07.7
080
080 | | | S | Δp ₁ ,
lb/sq ft | | | | | | | 1 | | | 1111 | 1111 | | | | Wave Δp_o , shape $1b/sq$ ft | 0.98 | | 1.83 | | 98.1 | 1.30 | 1.27 | 2.69
2.49
1.35
1.35
1.35
1.35 | 1. | 1.31 | 1.9 | | ta | | Wave | <u>р</u> , р., | N N N O | AN N N | AN AN | z | MR | NR | E E IN E E | E G G E ! | SERE | AN AN A | | Sonic-boom pressure signature data | 2 | Io,
pos.,
lb-sec/sq ft | ₹890°0
1890°0 | . 555
. 557
. 547
. 593 | .55.
88.
88.
88. | . 6473
4449. | .0531 | .¢∂ | .0427 | .0508
.0435
.0493
.0503 | .0600
.0514
.0459
.0472 | .0614
.0393
.0481
.0528 | .0558
.0460
.0526
.0481 | | saure s | Station 3 | Δt _o ,
pos., | 0.075 | 55,000 | 55.68 | .073
970. | .071 | 990. | .073 | 080
070
830
170
170 | 170.
160.
161.
170. | 86.65.65
86.65.65
86.65.65 | 889.
880.
880. | | -boom pre | st | Δp ₁ ,
lb/sq ft | | | 1111 | | 11 | ļ | 1 | | | 1111 | 1111 | | Sonic | | Δp _o ,
lb/sq ft | 2.00 | 1.30 | 1.33 | 1.19 | 1.45 | 1.43 | 1.23 | 1.13
1.33
1.34
1.35
1.36 | 1.52 | 1.38 | 1.71 | | | | Wave | NR
P | H H H H | EN IN | R R | NR R | Ð | N. | H H H H H H H H H H H H H H H H H H H | R R P R P | N N N N | RR R | | | | Io,
pos.,
lb-sec/sq ft | 0.0480 | .0586
.0577
.0541
.0574 | 949. | .0433
.0416 | .0290 | .0220 | .0407 | .0538
.0505
.0505
.0505
.0505
.0505 | .0584
.0553
.0570
.0576
.0595 | . 0447
. 0352
. 0372
. 0350 | 表
9
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | | | Station 1 | Δt _O ,
pos.,
sec | 0.088
.069 | 079
079
082 | .077
2880. | 6.98
6.98 | <u>\$</u> \$ | .057 | .082 | .065
.065
.077
.077 | .047
.078
.065
.077
.077 | 8.88. | 170.
880.
970. | | | ž | Δp ₁ ,
lb/sq ft | | | | | | | - | | | 4.1.95
9.1.199 | | | | | Δp _o ,
lb/sq ft | 1.13 | 1.61
1.24
1.20
1.40 | 1.45 | 1.05 | 95. | 1.03 | .80 | .i.g. 1.98 | 2.38
2.38
1.10
1.10
1.39 | 1.00 | 1.24
1.44
1.27 | | | | Cloud Precip-
cover itation | None | None
None
None
None | None
None
None
None | None
None | None | None | None | None
None
None
None
None | None
None
None
None
None | None
None
None | None
None
None
None | | er | | Cloud | Θ= | Θ = O = | ==== | = = | 5 7 | = | 2 | 0 = 0 = 0 = | 0===0= | 0 = = = | 0=== | | Weather | وينشق | winds,
knots | 180/15
180/15 | 200/15
200/15
250/14
250/14 | 20/11
20/11
20/13
20/13 | 180/9
180/9 | 180/7
180/7 | 160/8 | 9/080 | 100/18
100/18
140/15
140/15
140/15 | 160/12
160/12
160/13
160/13
200/14
200/14 | 120/9
120/9
160/10
160/10 | 170/7
160/8
160/8
180/7 | | | | temp., | まま | 8886 | 2288 | 77 | 88 | 80 | 81 | 888888
88888 | 888 | ## | 75
82
82
90 | | SIL | | Masch
T | 1.5 | uiiii
veet | i
i
i
i
i | 1.5 | 1.5 | 1.5 | 1.5 | iiiiiii
veevee | ininini
refre | i i i i i
i i i i i | 11.1
2.1
2.1
2.1 | | ditio | | Time | 1300 | 988
1659
1119 | 900
919
1100
1120 | 659 | 700 | 720 | 719 | 859
919
1059
1120
1259
1319 | 900
919
11059
1120
11300 | 1059
1119
1259
1319 | 929
929
1059 | | ng cor | | Flight | 7/1173
8/1174 | 3/1177
4/1178
5/1179
6/1180 | 3/1185
4/1186
5/1187
6/1188 | 1/1191
2/1192 | 1/1199 | 1,1208 | 2/1216 | 3/1225
4/1226
5/1227
6/1228
7/1229
8/1230 | 3/1233
4/1234
5/1235
6/1235
7/1237
8/1238 | 1,1242
5/1243
6/1244
7/1245 | 2/1247
3/1248
4/1249
5/1250 | | Operating conditions | | Date | 7-20-64 7 | 4-8-8-7
4-8-8-7
7-8-8-7
7-8-8-7 | 7-22-64
7-22-64
7-22-64
7-22-64
7-22-64 | 7-23-64 1 | 7-8-6 | 7-25-64 2/1208 | 7-26-64 | 7-27-6-4
7-27-6-4
7-27-6-5
7-27-6-5
7-27-6-6 | 4-4-8-8-4-4-4-8-8-4-4-4-4-4-4-4-4-4-4-4 | 7-89-6-
7-89-6-7-
7-89-6-7- | 7-30-64 2 7-30-64 4 7-30-64 5 | table xv.- summaty of sonic-boom data for various flights of airplane b for an altitude range from 39,000 to 40,000 feet | | | Wave | | : | ы O | M D N O | N. N. | | 0,00 0 | R of | GN AN | Ď, | Æ | MR 18 | AN ON | 000 | NR. | | N. | AN NP AN AN | AN A | N. | |------------------------------------|-----------|---|--------|---------|-------------------|------------------------------------|--------------------------|--------|--|------------------|------------------|----------------|----------------|------------------|------------------|---|---------|--------|---------|---|--|--------------------| | | | Io,
pos.,
lb-sec/sq ft | | | 0.0677 | .0380
.0381
.0498
.0216 | .0383
.0477 | | 0.0520
.0520
.04140
.0569 | .0485
.0585 | .0518 | .0324 | 0450. | .0308 | . 0476
8840. | .0496
.0460
.0553 | .0466 | | 0.0418 | . 585.
585.
585. | .0497
.0595
.0448
.0581
.0584 | .0259
4520. | | | | Δt _o ,
pos.,
sec | | | 0.076 | 080
075
096 | .083 | | 0.079
080.
070. | .093 | .078
470. | .091 | •079 | 570. | .080 | .129
.109 | 980. | | 0.095 | .089
.089
.083 | 070
 | .082 | | | Station 4 | Δp ₁ ,
lb/sq ft | | + | 11 | 1111 | | | 1111 | 11 | | { | ł | | | | ļ | | 1 | | | | | | S. | wave Δp_o ,
shape $1b/sq$ ft | | i | 2.13 | .04
1.52
1.67
26.1 | 1.06 | | 1.19 | 1.17 | 1.55 | 1.02 | 1.24 | .56 | 1.48 | .72
.92
1.70 | 1.18 | | 1.50 | 1.00 | 1.61
2.00
1.40
1.67 | .19 | | | | Wave | | Æ | NR
C | N C N | EN N | | E & & | Ąυ | P P | MR | MR | N N | R R | OOA | z | | æ | m A | NR
NP
P | z | | Sonic-boom pressure signature data | 2 | Io,
pos.,
lb-sec/sq ft | | 0.0637 | . 0483
. 0460 | . 0414
. 0477
. 0543 | .0519
.0449 | | 0.0572
.0607
.0517
.0503 | .0533 | ₹\$. | .0552 | .0489 | .0381 | . 0542
.0402 | .0601
.0601 | .0541 | | | 0.0461 | .0586 | 9840. | | essure | Station | Δt _o ,
pos.,
sec | | 0.080 | 88. | 986.
970.
986. | .087 | | 0.07
490.
680. | .088
870 | .067 | •075 | .072 | ₹. 0 | .077
.085 | .086
470.
570. | 570. | | 0.082 | .081
.087
.065 | 88.88.59. | 8.8. | | -boom pr | ຶ | Δp ₁ ,
lb/sq ft | | ì | | 1111 | 11 | | | | 11 | ļ | ļ | | 11 | | - | | ļ | | | 11 | | Sonic | | ΔP _o ,
lb/sq ft | | 1.79 | 1.16 | 1.61
1.33
1.93
1.93 | 1.27 | | 1.19
2.12
1.73
1.17 | 1.83 | 1.36
2.35 | 1.28 | 1.88 | 1.16 | 1.35 | 1.51 | 1,41 | | 1.53 | 25.25 | 2.44
1.53
1.60
2.95
1.31 | 1.01 | | | | wave
shape | feet | Æ | F E | MR O M | R R | feet | M M M M | # E | £ £ | Æ | Æ | EN EN | 展展 | 展 | A.W. | feet | E. | EN M P | ENNEW R | E E | | | | Io,
Pos.,
lb-sec/sq ft | 70,000 | 0.0547 | . 04.63
87.49. | .0406
.0518
.0550 | 90.
90.
90.
90. | 39,000 | 0.0447
.0436
.0414
.0414 | .0528 | .05±1
.05+1 | ₹30. | 46€0. | .0359 | .0384
.0397 | .0403 | ₹050. | 38,000 | 0.0437 | \$\$.
\$\$.
\$\$.
\$\$.
\$\$. | . 9459
. 9459
. 9449
. 9449
. 9449 | .0498
.0565 | | | Station 1 | Δt _o ,
pos.,
sec 1 | | 0.071 | 870. | .089.
108.
108. | .077
870. | | 0.082
.076
.073 | .069 | .073 | .059 | .075 | 80.0 | .073 | 770°. | 020. | | 0.079 | .091
.082
.082 | 070
076
076
083
083
083 | .086
Tro. | | | 3¢ | Δp ₁ ,
lb/sq ft | | | | 0.9
.99
.1.13 | | | 8886 | | | - | - | | | 44 | - | | - | | | | | | | $^{\Delta m P_{O'}}$ lb/sq ft | | 1.6 | 1.69 | .87
1.61
.92
1.36 | 1.52 | | 0.89
4.1.4
51.1 | 1.62 | 1.43 | 1.10 | % | \$ 8. | .93 | 1.00 | 1,44 | | 1.23 | 1.24.1.1.42 | 42.1.28.92.92.92.92.92.92.92.92.92.92.92.92.92. | 1.03 | | | · | Cloud Precip-
cover 1tation | | None | None | None
None
None | None | | None
None
None | None | None | None | None | None | None | None
None
None | None | | None | None
None
None | None
None
None
None
None | 5 5 | | 10 | | Cloud I | | 0 | | ⊕ = = * | 0 = | | Θ= = = | 0 = | Θ= | 0 | - | θ= | | = = 0 | 0 | | θ | O = = = | 273222 | | | Weather | 9 | winds,
knots | | 21/061 | 180/13
180/13 | 180/8
180/8
190/12
190/12 | 210/8 | | 200/20
200/20
190/18
190/18 | 190/14 | 01/071 | 160/8 | 9/080 | 080/12
080/12 | 120/8 | 130/8
130/8
060/6 | 170/1 | | 160/16 | 200/15
200/15
200/15
200/15 | 180/8
180/8
160/10
160/10
180/15 | 150/10
150/10 | | | 9 | temp., | | 83 | 2F | 225C | 81 | | \$8\$\$ | 88 | 29.39 | 80 | 81 | 22 | 88 | EE8 | 72 | | 1.7 | 883
83
83 | <i>\$%</i> \$\$\$4 | 65 | | ns | | Маср | | 1.4 | + +
- + | rida
en en en en | 1.5 | | 4444 | 2:5 | 1.5 |
1.5 | 1.5 | 1:5 | 1.5 | 444 | 1.5 | | 1:4 | 4.4.4.
4.4.4. | 44444
44444 | 1.4 | | conditions | | Time | | 1320 | 901 | 659
719
859
980 | 659 | 1 | 1319
1319 | 118 | 250 | 202 | 629 | 25 | 700 | 700
719
919 | 8 | | 1321 | 1059
1121
1302
1320 | 27
27
28
28
28
20
11
20
21 | 659 | | | | Flight | | 689/1 | 3/692 | 1/814
2/815
3/816
4/817 | 1/1183 | | 5/953
6/954
7/955
8/956 | 5/1172
6/1172 | 1/1175
2/1176 | 1/1207 | 1/1215 | 1/1223
2/1224 | 1/1231
2/1232 | 1/1239
2/1240
3/1241 | 1/1246 | | †/674 | 5/679
6/680
7/681
8/682 | 1/88
2/88
5/88
6/68
6/68
6/68 | 1/690
2/691 | | Operating | | Date | | 5-17-64 | 5-18-64 | 9999
4444
4444 | 7-22-64
7-22-64 | | 6-22-64 5/953
6-22-64 6/954
6-22-64 7/955
6-22-64 8/956 | 7-20-64 | 7-2-6
7-2-6 | 7-25-64 1/1207 | 7-26-64 1/1215 | 4-12-1
4-12-1 | 7-28-64 | 7-8-6
1-8-6-1-8-6-1-8-1-8-1-8-1-8-1-8-1-8-1-8- | 7-30-64 | | 5-15-64 | 5-16-64
5-16-64
5-16-64
5-16-64 | 7-17-8
7-17-8
7-17-8
7-17-8 | 5-18-64
5-18-64 | TABLE XVI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE B FOR AN ALTITUDE RANGE OF 36,000 AND 37,000 FEET Wave shape pos., lb-sec/sq ft 0.0419 .0360 .0531 .0532 .0487 .0587 .0651 .0651 .0772 .0472 .0431 .0369 .0462 .0497 .0480 .0462 .0507 .0578 .0578 .0374 .0258 .0487 .0400 .0441 .0367 $_{10}$ pos., Station 686.586.576 .075 .070 .070 869 ۵, .080 5.69 986 Wave Lb/sq ft lb/sq ft $\Delta p_{1},$ 11 | | 1111 11 1.1. 81. 1.92.06 2.22 37.57.83 4.1 1.86 1.87 2.9 2.99 1.82 1.16 **₽** F E 化硫硫铬铝矿 R R 맞 化化化品 照成 ₽ 4 g v data pos., lb-sec/sq ft Sonic-boom pressure signature 54.54.45.85 54.7588478 . 55% 87% .0546 .0506 .0577 0449. 0508 I_0 Station 3 0.067 .065 .072 Wave Δp_o , Δp_1 , Δp_2 , sec. 58888548885488 36.66 .072 88 48.8 .059 986 38 48 ${\mathbb Q}_1,$ 111111 11 11 8486834 2.33 1.41 2.05 8.8.83 おな 55.55 37,000 feet **FREEFER** M M M 照照 | | æ ₽ はほぼん æ E E ₩₩ Io, pos., lb-sec/sq ft .0452 .0411 .0411 .0417 .0364 1980 .0569 .0502 .0502 .0560 .0752 .0632 .0553 9890 Station 1 Δp_{o} , Δp_{1} , Δp_{e} 0.065 770. 770. ç. 689. 8865568 .070 070. 875. 876. 876. 886. 288 .083 .093 Δt_o, -t_70. $\mathbb{A}_{1},$ 1.22 1.7 1.17 1.0 8.6.5.1 7.E 2.06 3.53 9.8 1.17 Precip-itation None None None None None None None None None Cloud 0 = = 0 = 0 = θ= 0 = Weather 120/10 180/15 180/19 180/19 190/17 180/20 200/15 Surface winds, knots 320/3 320/3 110/6 110/6 Surface temp., 88 72 888 88834 85 87 87 86 868 88 88833 88 Mach 4444 1.5 uninini vvvvvvv 1:5 1.5 1.5 1.5 1.5 Operating conditions Time 1301 0011 1100 1259 1319 1300 1320 1389 1301 1320 1300 1320 1100 1259 1259 12 SZ 720 859 920 1059 1120 1130 1320 1,961 976/9 5/899 6/900 7/901 8/902 2/926 7/927 6/929 6/930 8/931 5/95 5/967 6/968 1/969 8/970 6/983 7/984 Flight 6-16-64 \$-15-9 6-15-9 6-23-64 49-12-9 6-27-64 6-15-6 6-15-6 6-15-6 6-15-6 6-19-64 6-19-64 6-19-64 6-19-64 6-19-64 6-19-64 \$\$\$\$. \$\\$\\$\\$\$ Date TABLE XVI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHES OF AIRPLANE B FOR AN ALEXIUDE BANGE OF 36,000 AND 37,000 FEET - Continued | | | Wave | | EN EN | | F D E | C NP C | NR R | # D D D | NR — | ξυυ
A | S de | pr. p. | R R | |------------------------------------|-----------|--|-------------|------------------|------------------|----------------------------|--------------------------------------|---|--------------------------------------|----------------------------|----------------------------|------------------|----------------------|------------------| | | | t. | | | | | | | | | | | | | | | æ | Io,
pos.,
lb-sec/sq | | 0.0495 | .0518 | .0750
.0415
.0397 | | 4090.
57750.
5750.
5750. | 9696.
9696.
1040. | .0478
.0567 | .05427
.0545
.0545 | .0483 | .0508 | .0401
.0459 | | | Station | Δto,
pos.,
sec | | 570.0
580. | .107 | .064
199. | .080
.078
.076 | 970
970
880
880 | . 860
. 109 | .093
.093 | .087
.103 | .080 | 011. | 480. | | | ď | wave Δp_{o} , Δp_{1} , shape $1b/sq$ ft $1b/sq$ ft | | | !! | | | 1111 | 1111 | | | | | | | | | Δp _o ,
1b/sq ft | | 1.22
1.21 | 21. | 2.43 | 2.16
1.19
1.77
1.50 | 1.99
74.1
48. | 1.16 | 1.49 | 1.38
8.88 | 2.18 |
5.75 | 98. | | ta
ta | | | | R. R. | 11 | NO K | N 4 O | E W W D | K K G W | дд | E E E | M M | α p ₄ | N N | | Sonic-boom pressure signature data | | Io,
Pos.,
lb-sec/sq ft | | 0.0537 | .0351 | .080.
1080.
47.40. | .93
.93
.93
.03 | .0515
.0537
.0535
.0535 | 948
968
959
959 | .0713 | .0502
.0568
.0539 | .0518
.0427 | .05476
8450. | .0523 | | ssure s | Station 3 | Δto,
pos., | | 0.062 | .108 | .072
.078
.065 | <u>\$</u> 6888 | 070.
670.
170.
870. | 060.
070.
170. | .072 | 879.
880.
83. | 870. | .080 |
500
500 | | -boom pre | ಕ | Δφ ₁ ,
lb/sq ft | | 11 | 11 | | | 1111 | 1111 | | | | | 11 | | Sonic | | Wave Δp_0 , Δp_1 , shape $1b/sq$ ft $1b/sq$ ft | | 1.66 | ٠.
تخ | 1.42
2.04
1.03 | 1.35 | 1.35
2.09
1.11
1.71 | | 2.46 | 1.33 | 1.35 | 1.12 | 1.46 | | | | | 37,000 feet | AN NA | | N N N | # # # # # | A m o | N N N | gςυ | 1 === | EN EN | oc oc | r E | | | _ | Io,
pos.,
lb-sec/sq ft | 37,00 | 0.0624
.0507 | .0422 | .9500
9400
8700 | .0610
.0649
.0571
.3170 | .0588
.0691
.0691 | .933
24
24
24 | .0589 | .0655
.0535
.0565 | .0755 | .0574
.0393 | .0572 | | | Station 1 | Δt _o ,
pos., | | 70.0
570. | .186 | .067
.089
.895 | 8888 | .089
.089 | 86.68 | .10
.08
.05 | 98.0.99. | 070. | 986. | 9.08
8.08 | | | ₹ | Δρ _o , Δρ ₁ ,
lb/sq ft lb/sq ft | | 11 | 11 | | 1111 | 1111 | 1111 | 11 | !!! | 11 | | | | | | ∆p _o ,
lb/sq ft | | 1.38 | .61
74. | %
तुः
१ | 11.3 | 1.73 | 2.10
1.42
1.32 | 1.16 | 1.13 | 1.98 | .96 | 1.43 | | | | Cloud Precip- | | None | None | None
None
None | None
None
None | None
None
None | None
None
None | None | None
None
None | None | None | None | | er | | Cloud J | • | Θ= | ⊕ ≈ | 00 = | Θ=0= | F2 = = | Θ = 0 = | z = | 2 12 2 | θ= | θ = | θ = | | Weather | Charles | | | 200/12 | 140/15 | 150/5
130/6
130/6 | 160/10
160/10
200/8
200/8 | 190/12
190/12
160/10
160/10 | 200/20
200/20
200/20
200/30 | 200/16 | 230/15
230/15
230/15 | 270/11 | 240/18 | 220/16 | | | 94.5 | temp., | | まま | 66 | 933 | 888\$ | 88&£ | 2222 | 88 | 97 | 101 | 163 | 97 | | ons | | Mach | | 2.4 | 1.5 | 2111 | iiiii
iiiii | iiiii
veev | 22.5 | 1.5 | 444 | 1.5 | 1.5 | 1.5 | | nditi | | Тіше | | 1300 | 1300 | 1120
1300
1319 | 1100
1119
1300
1319 | 1,300
1,300
1,319 | 1059
1259
1319 | 1,500 | 1059
1302
1320 | 1380 | 1300 | 1300 | | 1ng cc | | Flight | | 7/1013
8/1014 | 7/1021
8/1022 | 6/1028
7/1029
8/1030 | 5/1035
6/1036
7/1037
8/1038 | 5/1043
6/1044
7/1045
8/1046 | 5/1051
6/1052
7/1053
8/1054 | 7/1061 1500
8/1062 1519 | 5/1067
7/1069
8/1070 | 7/1077
8/1078 | 7/1085
8/1086 | 7/1093
8/1094 | | Operating conditions | | Date | | 6-30-64 7 | 7- 1-64 7 | 7-2-0-7-7-2-0-6-1 | 7-7-7 | 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 4444 | 7-6-6-7 | 7-7-6-7-7 | 7-8-6-7 | 7-9-6-7-
7-9-6-7- | 7-10-64 | TABLE XVI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE B FOR AN AIRTHUDE RANGE OF 36,000 AND 37,000 FEET - Concluded | | | Wave | | ပေး | N C C N N N | α | P NR | | æ æ | υ | U U | | N. N. | A 0 0 | ^P RN | |------------------------------------|-----------|--------------------------------------|-------------|---------------------|---|------------------|------------------|------------------|------------------|---------|--------------------|-------------|-----------------|---|------------------| | | | ft sh | | | | 1 | | <u>' i</u> | | | | | | | | | | | Io,
pos.,
lb-sec/sq | | 0.0487 | .0347
.0262
.0262
.0199
.0372 | .0594
.0338 | .0683
.0436 | .0584 | .0517 | .0628 | .0354
.0518 | | 0.0606 | .0552
.0352
.0382
.0481 | .0567 | | | † u | | | | 1100-100t | 90 | <i>6</i> 0 | | m m | | | | | | 0.1 | | | Station | Δto,
t pos., | | 0.0
40.0
680. | 480.
870.
880.
870. | 986. | .075
.076 | 970.
970. | 88 | .075 | 8. | | 0.072 | | .070.
180. | | | | Δp ₁ ,
lb/sq ft | | 11 | 111111 | | | | 11 | | 11 | | 11 | 1111 | | | | | wave Δp_o , shape $1b/sq$ ft | | 1.65 | 1.19
26.
48.
16.
50.1 | 4.1
48. | 2.19 | 1.56 | 1.3 | 1.59 | 1.06 | | 1.43 | 2.49
.73
.87
1.00 | 2.42 | | 85 | | | | qn
qn | NR
C C I | H. | υæ | Дι | E | NR | дυ | | N N | P RN RN PN | F. K. | | Sonic-boom pressure signature data | \$ | Io,
pos.,
lb-sec/sq ft | | 0.0557 | 0.0595
0.0395
0.0389
0.0336 | .0592 | .0517 | .0569
.0588 | .0698 | 7550. | 9649.
6949. | | 0.0632 | .0494
.0462
.0557
.0506 | .0551 | | BBure | Station 3 | Δto,
pos.,
sec | | 0.062 | .069
.082
.078
.078 | 970.
890. | .061 |
86. | .066 | .062 | 880. | | 0.068 | 8869 | 980. | | -boom pre | ₩. | Δp ₁ ,
lb/sq ft | | | 111111 | | 11 | 11 | 11 | | | | | 1111 | | | Sonto | | Δp _o ,
lb/sq ft | | 2.03 | 1.57 | 1.32 | 2.10 | 2.92 | 2.15 | 1.56 | 1.54 | | 1.68 | 2.28
2.38
2.33
2.03 | 1.67 | | | | Wave | 37,000 feet | NP
NR | EN CE | N d | A N | <u>د</u> | £ « | N. | Pi Ri | 36,000 feet | GN RN | a a | æ ¦ | | | 1 | Io,
pos.,
lb-sec/sq ft | 37,00 | 0.0536 | .0580
.0577
.0573
.0458
.0551 | 62월. | .0733 | .0770
.0526 | .0712 | 9690* | .0674
.0476 | 36,00 |
0.0768
.0696 | .0588
.0637
.0608
.0503 | .0415
 | | | Station 1 | Δto,
pos., | | 0.084
0.076 | 040
076
070
070
070
180 | .088 | .076 | .070 | 580. | .083 | 980. | | 0.082
.078 | 870
770
480
860 | .отв | | | 35 | Δp ₁ ,
lb/sq ft | | | | | | | | i | | | 1.9 | 19.
79.
80.1 | 1.05 | | | | Δp _o ,
lb/sq ft | | 1.81 | 11111111
11111111111111111111111111111 | 1.19
2.38 | 3.¥ | 2.01 | 1.85 | 1.40 | 2.18 | | 2.2
1.66 | 1.38 | ま. | | | | Cloud Precip-
cover itation | | None | None
None
None
None
None | None | None | None | None | None | None | | None | None
None
None | None
None | | er | | Cloud I | | e = | 1 = = = = | 0 = | θ= | θ= | 2 2 | = | - = | | 0 = | 0=== | " " | | Weather | į | winds, knots | 1 | 320/18
320/18 | 350/13
350/13
020/10
020/10
020/15 | 200/12 | 180/18
180/18 | 200/12 | 170/12
170/12 | 180/10 | 150/15 | | 350/8
350/8 | 190/19
190/19
190/23
190/23 | 160/20
160/20 | | | 9 | temp., | | 88 | 77
88
87
75 | 88 | 97 | まま | 98 | 72 | 88 | | ક્ક | 98
98
98
98
98 | 88 | | guc | | Mach | | 1.5 | iiiiiii
vvvvv | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | 2.1 | 444
664 | 1.5 | | nditic | | Тіле | | 1300 | 859
1059
1059
1119
1239
1339 | 1300 | 1300 | 1300 | 1259
1319 | 1259 | 1300
1319 | | 58 | 1110
1259
1319 | 1258
1319 | | Operating conditions | | Flight Time | | 7/1101 | 3/1105
4/1106
5/1107
6/1108
8/1110 | 7/1135
8/1136 | 7/1133
8/1134 | 7/1141
8/1142 | //1149
3/1150 | 7/1157 | 7/1165
8/1166 | | 1/822
2/823 | 5/840
6/841
7/842
8/843 | 7/850
8/851 | | Operat | | Date | | 7-11-64 | 7-12-64
7-12-64
7-12-64
7-12-64
7-12-64 | 7-14-64 | 7-15-64 | 7-16-64 | 7-17-64 | 7-18-64 | 7-19-64
7-19-64 | | 6-5-6 | \$\$\$\$
\$445
\$444
\$444
\$444
\$444
\$444
\$444 | 49-8-9 | TABLE XVII.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE B FOR AN ALLTITUDE OF 35,000 FEET | | | Wave | AN NA | PG. | H W | N N N | щ | E E E E E E | ~ ~ ~ | ΨN | NP
R | ъ. ъ. | P
NR
R | RN H | |------------------------------------|-----------|--|--------------------------------------|---------|----------------|--|---------|--|---|---------|----------------|----------------------|--------------------------------------|--------------------------| | | 7 | Io,
pos.,
lb-sec/sq ft | 0.0389
.0380
.0538 | まき. | .0478 | .0356
.0452
.0396
.0351 | 867O. | .0579
.0502
.0502
.0271
.0557 | .0301
.0375
.0556
.0481 | 4450. | .9407
.0451 | .0578
.0549 | .0536
.0613
.0512 | .0580
.0511
.0698 | | | Station | Δto,
pos., | 0.092
.082
.078 | .086 | .078 | .087
.090 | .080 | 980
1380
1980
1970
1980 | 080.
070.
070. | .081 | .069 | 470. | 470.
770.
170. | .082
.068 | | | to. | Δp ₁ ,
lb/sq ft | 111 | 1 | | 1111 | 1 | | | 1 | | | | | | | | Δpο,
lb/sq ft | 0.64
1.07
1.15 | .93 | 1.26 | | 1.19 | 1.86
2.1.1.98
2.98
2.98 | | 1.02 | 1.59 | 2.87 | 2.68
1.49
1.38 | 1.39 | | ta
ta | | Wave | m gg gg | AP. | AN AN | ир
Мр | W. | THE THE | K K M M | ₩
 | S dd | GR RR | R R R | N N N | | Sonic-boom pressure signature data | ~ | Io,
pos.,
lb-sec/sq ft | 0.0485 | 82±0. | .0501 | .9566
.9569
.9521
.9521 | .0530 | .0529
.0400
.0642
.0557
.0557 | 24.
17.49.
10.60.
27.00. | 9950. | .0558 | .0535 | .0501
.0521
.0544 | .0603
.0521
#470. | | essure | Station 3 | Δto,
pos.,
sec | 0.076
490.
070. | .077 | 070. | 060.
070.
070.
480. | .074 | | 8,6,4,8 | -062 | 539. | ç.
88 | 70.
190. | 262
170:
1470: | | rd mood- | 63 | Δp ₁ ,
lb/sq ft | 111 | | | 1111 | } | | 1111 | ļ | | | | 111 | | Sonic | | Wave ∆p _o ,
shape:lb/sq ft | 1.50 | 1.93 | 2.79 | 1.64
3.42
1.86 | 1.3 | 6.65
1.65
1.65
1.65
1.65
1.65 | 1.95
7.05
3.40 | 2.27 | 1.41 | 1.89 | 1.61 | 1.91
2.13
1.46 | | | | | K K K | MR | B m | W W W W | Æ | 44444 | A W W W | £ | M M | er er | AN AN | NA NA | | | 1 | Io,
pos.,
lb-sec/sq ft | 00.00.00
00500
4050. | .0405 | .0502 | .0401
.0403
.0522
.0539 | 70±0. | . 0505
. 0538
. 0538
. 0538 | .0514
.0448
.0538
.05450 | .04.50 | 55.50. | .0620 | .0652
.0616
.0533 | .0626
.0645
.4730. | | | Station 1 | ∆to,.
pos., | 0.063
170.
570. | .072 | 990. | .076
.070
.072
.072 | .072 | 770.
080.
080.
070.
070.
070. | .063
480.
870. | 190. | .072 | .075 | .069
.080 | 969.
970.
9690. | | | iós | Δp1,
lb/sq ft | 0.99 | 8. | 1.12 | 86.
26.1.
38. | 1.9 | 1.08
1.13
1.32
1.32
1.33 | 1.28
1.16
1.31 | % | 1.03 | 1.02 | 1.23
1.17
.97 | 1.13 | | | | Δpo,
lb/sq ft | 1.18 | 1.26 | 1.81 | 1.01 | 1.28 | 2.13
2.13
2.13
1.23
1.23 | 1.92 | 1.63 | 2.12 | 1.59 | 1.53 | 1.69
1.93
2.04 | | | | Cloud Precip-
cover itation | None
None
None | None | None | None
None
None | None | None
None
None
None
None | None
None
None | None | None | None | None
None
None | None
None
None | | rer | | cover | 0 = = | ⊜ | 2 2 | θ=== | 0 | € 2 2 2 2 | ⊖ ≃ ⊖ = | - | ⊕ ≈ | 0 = | ÷ = Θ | 00 = | | Weather | Surfa | | 200/22
200/17
200/17 | 150/16 | 200/15 | 190/22
190/22
190/20
190/20 | 180/15 | 190/20
190/20
190/22
190/22
210/16
210/16 | 190/14
190/14
200/14
200/14 | 91/061 | ¥0/8
%0/8 | 320/8
320/8 | 310/5
310/5
360/6 | 200/5
180/4
180/4 | | | Surface | temp., | 92 | 88 | 88 | 8888 | 11 | 2888822 | 9999
5555 | ಹೆ | 로 | 88 | 888 | 81
87
87 | | sac | | Mach | 444 | 1.5 | 1.5 | uuiu
vee | 1.5 | 200000 | i i i i i | 1.5 | 1:5 | 5.1 |
 | 25.1 | | nditic | | Тіте | 1259
1259
1319 | 1319 | 1300 | 1,500
1,500
1,319 | 700 | 859
1120
1120
1320 | 900
919
1300
1319 | 900 | 1100
1100 | 88 | 988
889
1100 | 919
1100
1118 | | Operating conditions | | Flight | 6/857
7/858
8/859 | 8/867 | 7/915
8/916 | 5/921
6/922
7/923
8/924 | 1/925 | 3/935 859
4/936 919
5/937 1100
6/938 1120
7/939 1300
8/940 1320 | 3/4:2
1/9:4
8/9:4
8/9:4 | 3/951 | 2/959 | 3/965 | 3/973
4/974
5/975 | 3/980
4/981
5/982 | | Operat | | Date | \$\$\$
\$\dot{6}\$
\$\dot{6}\$ | 6-10-64 | 6-17-64 | 6-18-64
6-18-64
6-18-64
6-18-64 | 6-19-64 | \$888
8888
8888
8888
8888
8888
8888
888 | \$ \$ \$ \$
5 5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 | 6-22-64 | 6-23-64 | #9-#2-9:
#9-#2-9: | 9
9
9
9
9
9
9
9 | 4-8 | TABLE XVII.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRFLANE B FOR AN ALFITUDE OF 35,000 FEET - Continued | _ | | | | | | | | | | | | | | | | |------------------------------------|-----------
---|-----------------------------------|--------------------------|---------|--|----------------------------|---|------------------|--------------|-------------------|--|--|------------------|---| | | | Wave
shape | CNN | S N S | ac; | NN NP N | N O | NP | R | NP GN | ğ ğ | P NP O | a z | EK CJ | NB C C | | | +1 | Io,
pos.,
lb-sec/sq ft | 0.0576
6.0576
6.05740. | .0506
.0333
.0419 | .0525 | .0427
.0455
.0557
.0459 | .0305 | .0571 | 5440. | .0566 | . 0588
88. 49. | .0535
.0580
.0427 | .0481 | .0393 | .0450
.0651
.0437
.0532 | | | Station | Δto,
pos.,
sec | 470.0
.080.
090. | .071 | .095 | \$70.
\$70.
\$690. | 770. | .085
.077
.070 | .058 | .077 | 0.0. | 7.0.
080
7.00
090 | ¥0.
17.0. | .035 | 760.
170.
990. | | | St | Δp _t ,
lb/sq ft | 1111 | | | | | | [] | | | 111 | | | | | | | Δp _o ,
lb/sq ft | 1.30
1.44
1.69
1.35 | 1.85 | 1.10 | 1.33
1.31
2.18
1.76 | .81
1.48
.55 | 1.68
1.95
1.95 | :.
¥¥ | 1.65 | 1.60 | 2.00
1.54
295 | 1.68 | 1.02 | 3.00
1.05
1.36 | | ಪ | | Wave | N N N | N N N | MR | N H H | NR
R | A A K | NR | AN N | NP | pr pr pr | a K | 张 张 | NP
N
NP | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | 0.0460
.0508
.0636
.0529 | .0550 | %±9. | .0535
.0641
.0497
.0456 | .0559
.0417
.0385 | .0560 | .0651 | .0605 | .0540 | .9.11
9.43
9.83 | .0585 | 9000.
1845. | .0558
.0554
.0533 | | seure s | Station 3 | Δto,
pos.,
sec l | 0.070
.066
.070 | .062
.063 | % | .070
.070
.076
.070 | 990.
880.
760. | .072 | .070.
870. | 990. | .068 | .078
.082
.076 | 86.48 | 9890. | .078
.062
.085
.073 | | -boom pre | St | Δp ₁ ,
lb/sq ft | 1111 | | - | 1111 | | | | | | | | 11 | 1111 | | Sonic | | Wave Δp_o , shape $1b/sq$ ft | 1.41
1.77
2.23
1.80 | 1.51 | 1.05 | 1.88
1.88
1.33 | 2.13 | 2.00
3.03
1.70 | 1.78 | 1.54 | 1.73 | 1.09
1.22
1.22 | 1.09 | 2.52 | 2.23
1.68
1.14
1.89 | | | | Wave | NR NR C | AN AN | υ | AN A | M N | # # £ | zz | N.N. | AN NA | RRR | z d | AN AN | AN
AN
TN | | | | Io,
pos.,
lb-sec/sq ft | 0.0666
.0586
.0567
.068 | .0588
.0630
.0588 | .0607 | . 0632
. 0613
. 0569 | .0542
.0594
.0470 | .0543 | .0714
.0529 | .0594 | .0581 | .0541
.0502 | .0659 | .0634
.0610 |
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0
.08.0 | | | Station 1 | Δto,
pos., | 0.070
.069
.087 | .070
.086 | 620. | .068
.070
.070 | 8,8,8 | .073
.072 | 970.
970. | .081
.082 | .087 | 86.00
87.00
89.00 | .070
070 | .065
.074 | .067
.078
.079 | | | St | | 1.18 | 1.23 | - | | | | 11 | 11 | 11 | | | 11 | | | | | Δp_o , Δp_1 , Δp_2 , Δp_3 , Δp_4 , Δp_2 , Δp_3 , Δp_4 , Δp_2 , Δp_3 , Δp_4 , Δp_2 , Δp_3 , Δp_4 , Δp_2 , Δp_3 , Δp_4 , Δp_4 , Δp_2 , Δp_3 , Δp_4 , Δp_4 , Δp_5 , Δp_4 , Δp_5 Δ | 1.93
1.60
1.27
1.76 | 1.50 | 1.69 | 2.14
1.63
1.89
1.91 | 1.22
2.16
.88 | 1.44 | 1.45 | 1.35 | 1.46 | 1.39 | 2.04
2.19 | 1.83 | 1.42 | | | | Cloud Precip-
cover itation | None
None
None
None | None
None
None | None | None
None
None | None
None
None | None
None
None | None | None | None | None
None
None | None | None | None
None
None | | ler | | Cloud | 0 = - = | 2 2 7 | 9 | O = 0 = | = ⊖ = | Θ= 0 | Θ= | 0 = | 0 = | O = = | " " | ⊕ ≈ | 0 = 0 = | | Weather | 9 | winds,
knots | 200/8
200/8
310/5
310/5 | 160/6
160/6
170/11 | 160/8 | 210/10
220/10
220/10 | 200/10
180/10
180/10 | 140/5
140/5
150/5 | 190/5 | 190/12 | 220/20 | 220/20
240/18
240/18 | 230/17
230/15 | 240/16
240/16 | 230/20
230/20
240/18
240/18 | | | | temp., | 83.5
888
888 | 88 83 | 91 | 888
888
888 | 78
81
81 | 82
82
87 | 33,33 | 88 | 68 | 888 | 92 | 88 | 19
190
100
100 | | gu | | Mach | 4444 | 2.1.5 | 1.5 | i i i i i
i i i i i | 1.5 | 1:5 | 1.5 | 1:5 | 4.5 | 1.5 | 1.5 | 1.5 | e i i i i | | ditio | | Time | 900
919
1101
1121 | 859
980
1122 | 1259 | 900
1100
1110 | 980 | 980
1100 | 900 | 88 | 88 | 903
1100
1119 | 919 | 1100 | 900
919
1059
1119 | | lng cor | | Flight | 3/987
1/988
5/989
6/990 | 3/995
4/996
5/997 | 7/1006 | 5/1009
1/1010
1/1012
1/1012 | 3/1017
5/1019
6/1020 | 3/1025
4/1026
5/1027 | 3/1033
4/1034 | 3/1041 | 3/1049 | 3/1057
5/1059
6/1060 | 4/1066
6/1068 | 5/1075
6/1076 | 3/1081
4/1082
5/1083
6/1084 | | Operating conditions | | Date F | #9-12-9
#9-12-9 | 4-88-6- | 19-62-9 | 6-30-64 3/1009
6-30-64 4/1010
6-30-64 5/1011 1
6-30-64 6/1012 1 | 7-1-6 | 45.6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6- | 7- 3-6- | 19-1 -2 | 7-7-8-7-1 | 4-6-7-7-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6- | \$ 1 | 7-8-64 5 | 7-7-7-
49-9-9-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7 | TABLE XVII.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPIANE B FOR AN ALITITUDE OF 35,000 FEET - Concluded | _ | _ | | | | | | | | | | | | | |------------------------------------|-----------|--------------------------------------|-------------------------------|---|---|--|--------------------------------------|--------------------------------------|--------------------------------------|------------------|-------------------------------|------------------|------------------| | | | Wave | NR
P | o MM | K K K C C C C | a ga a ga | P
NR
C | A H H H | of R N O | R R | N ! N | p., pc | N N | | | | Io,
pos.,
lb-sec/sq ft | 0.0432
.0574
.0582 | .0184
.0529
.0549 | .0449
.0585
.0532
.0618
.0590 | .0550
.0493
.0631 | .0675
.0556
.0584
.0589 | .0496
.0491
.0418
.0371 | .0589
.0464
7,140. | .05679 | .0599
.0405
.0387 | も99.
1990. | .0486 | | | Station 4 | Δto,
pos.,
sec | 480.0
570.
480. | | 996
790.
988
90.
770. | | | 888.52.4 |
.082
.100
.074
.070. | | 780.
500.
111. | .109 | .091 | | | 50 | Δ ₂ ,
lb/sq ft | | 1111 | | | 1111 | | | | | | | | | | Δp _o ,
1b/sq ft | 0.85
1.98
3.01 | .61
.17
1.71
1.17 | .87
1.00
1.67
1.58
1.40 | 1.13
1.65
3.83
1.97 | 3.31
1.53
1.65 |
8.8.9.18. | 2.05
1.02
2.04 | 1.56 | 1.4.7
.87
.69 | 2.70 | 1.8 | | aş. | | Wave | R. R. G. | CORE | RN F F F F R | AN N N N N N N N N N N N N N N N N N N | EN R C | NR
P P | E G E A | ρU | A N N | S EN | αц | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0476
.0543
.0460. | .0345
.0265
.0551
.0501 | .0509
.0601
.0586
.0516
.0481 | .0585
.0577
.0577
.0591 | .0660
.0547
.0660
.0515 | .0589
.0589
.0491 | .0531
.0508
.0508
.0440 | .0570
.0718 | .0477
.0379
.0393 | .0526 | .0508 | | ssure | Station | Δto,
pos.,
sec | 0.0
20.0
880
670 | 8.6.88
8.6.88 | 88.98.98.
7.88.7.88. | 88.
5.75.
188. | 470.
780.
780. | .086.
.070.
.070. | 86.8.8. | 490.
970. | .0 81
.090 | 86. | .088 | | -boom pre | St | Δp ₁ ,
lb/sq ft | 111 | 1111 | | 1111 | 1111 | 1111 | 1111 | | | | !! | | Sonte | | Wave Δp_o , shape $1b/sq$ ft | 1.48 | .85
1.68
1.31 | 1.52
1.96
1.63
89 | 1.36 | 1.93 | 1.02
2.05
2.18
1.43 | 1.53 | 2.90 | 9.1.
8.6. | 1.74 | 1.08
2.86 | | İ | | Wave | A Z | A M M M | M P P M P R | N E L | K K d d | EN EN C | RNEG | EN GA | # 4 K | AN AN | NR
NP | | | 1 | Io,
pos.,
lb-sec/sq ft | 0.0615
.0478 | .0723
.0545
.0574 | 86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00
86.00 | .0587
.0608
 | .0667
.0593
.0611
.0727 | .0604
.0706
.0665
.0665 | .0556
.0524
.0629
.0747 | .056
.0688 | .0616
.0709
.0363 | .0631 | .0337 | | | Station 1 | Δto,
pos.,
sec | 0.070 | 980.
980.
470.
870. | £85.886
£886
£ | 770.
470. | 20.
070.
070. | ±28.
€8.
€8. | £9.48.5. | .081 | .068
.072
.109 | 5.65 | 8.4 | | | Ś | Δp ₁ ,
lb/sq ft | | 1111 | 111111 | 1111 | 1111 | | 1111 | | | | !! | | | | ΔΦ ₀ ,
1b/sq ft | 2.24
1.67
1.33 | 1.86
.93
1.4.1 | 1.75
1.52
1.10
2.48
2.07 | 1.60
1.51
1.32
2.79 | 2.10
1.14
2.72
2.62 | 1.75 | 1.32
1.38
1.28 | 1.38 | 2.07
3.15
5.58 | 1.67 | 1.09 | | | : | Cloud Precip-
cover itation | None
None
None | None
None
None | None
None
None
None
None | None
None
None | None
None
None | None
None
None | None
None
None | None | None
None
None | None
None | None | | ther | | Cloud | a = = | 2 7 2 7 | 0=== 0= | 0 = = = | 0 = 0 = | 0 = = = | 0 = 0 = | 2 2 | 00= | 0 = | * = | | Weath | 30.0 | winds,
knots | 190/10
220/16
220/16 | 250/13
250/13
310/80
310/80 | 310/6
310/6
020/8
020/8
020/7 | 180/12
180/12
190/15
190/15 | 200/18
200/18
200/18
200/18 | 180/10
180/10
210/18
210/18 | 210/12
210/12
180/8
180/8 | 190/10
180/10 | 230/15
170/12
170/12 | 200/15 | 100/7 | | | 3 | temp., | 888 | 87
87
92 | 558888 | 8834 | 8888 | 81
93
93 | ೩ ೩೪೪೪ | ₫8 | | ಹೆಹೆ | 97
97 | | su | | Мась | 1.5 | 11.5 | uuuuuu
vivivivi | 4444 | 4444 | 1111 | 1.5 | 1.5 | 444 | 1.5 | 1.5 | | itto | | Time 1 | 859
1180
1180 | 909
919
1059
1119 | 988
1108
1119
1519 | 98
919
911
911 | 865
1659
113 | 90
919
1100
1119 | 859
919
1100
1119 | 1059 | 90
1139
1139 | 859
919 | 1059 | | Operating conditions | | Flight 7 | 3/1089
5/1091
6/1092 | 3/1097
4/1098
5/1099
6/1100 | 3/1113
5/1114
5/1115
6/116
1/1117
8/1118 | 3/1122
5/1123
6/1124 | 3/11.29
5/11.30
6/11.32 | 3/1137
4/1138
5/1139
6/1140 | 3/1145
4/1146
5/1147
6/1148 | 3/1153 | 3/1161
5/1163
6/1164 | 3/1169
4/1170 | 5/1219
6/1220 | | Operat | | Date | 7-10-64
7-10-64
7-10-64 | 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 7-13-6
7-13-6
7-13-6
7-13-6
7-13-6 | 7-1-6
7-1-6
7-1-6 | 7-15-6
7-15-6
7-15-6
7-15-6 | 7-16-6
7-16-6
7-16-9
7-16-9 | 7-17-6
7-17-6
7-17-6
7-17-6 | 7-18-64 | 7-19-64
7-19-64
7-19-64 | 7-20-64 | 7-8-6 | TABLE XVIII.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE B ## FOR AN ALETTUDE OF 34,000 FEET | _ | | | | | | | | |------------------------------------|-----------|--|----------------------------|--------------------------------------|----------------|--|--| | | | Wave | 04 PK | E M M M | ρ, ρ, | R & L | KKWOO | | | | Io,
pos.,
lb-sec/sq ft | 0.0459
.0416
.0597 | .0387
.0365
.0459 | .0529 | .0481
.0439 | . \$40.
. \$40.
. \$40.
. \$40. | | | | Δto,
pos.,
sec | 0.081
0.079
0.065 | 270.
080.
70.
70. | .070 | 870.
670. | .076
.086
.086
.126 | | | Station 4 | ∆p ₁ ,
lb/sq ft | | 1111 | | 1111 | 111111 | | | S | Δp _o ,
lb/sq ft | 1.01
1.01
1.19 | 1.38 | 2.14 | 1.36 | 1.02 | | 83 | | Wave
вћаре | NR
R | N
N
N
N
N
N | z g | 88 84 ⁴ | R H T H T N | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | 0.0410
6420.
6467 | | .0628 | . 0580
. 0580
. 0551
. 0647 | .0419
.0535
.0508
.0618
.0633 | | ssure | Station | Δto,
pos.,
sec | 0.077
.076
.082 | 989.
696.
796. | 990. | 170.
880.
880. | 990
490
490
860
860
860 | | -boom pre | St | Δp ₁ ,
lb/sq ft | | 1111 | 11 | 1111 | | | Sonic | | Wave $\Delta p_{\rm O}$, shape $1b/sq$ ft | 1.2
1.2
.93 | 1.61 | 2.30 | 1.22 | . i o i o i i | | | | жауе
sbape | NR
NP | AN I WA | N K | I I W d | - N T N N N | | | 1 | Io,
pos.,
lb-sec/sq ft | 0.0522
.0511
.0349 | .0491 | .059 | .0605
.0528
.0587
.0608 | .0613
.0454
.0610
.0489
.0586 | | | Station | Δto,
pos.,
sec | | .076
.081 | .077
970. | 870.
880.
770. | .080
.070
.075
.070
.070 | | | \$ | Δp ₁ ,
lb/sq ft | 1.43 | .83 | 1.39 | 9.1.24
21.1.24
59. | 1.01 | | | | Δpo,
lb/sq ft | 1.84
2.26
1.51 | 1.24 | 1.96 | 1.86
1.43
1.45
2.67 | 1.62
1.60
1.46
1.21
1.21 | | | | Cloud Precip-
cover itation | None
None
None | None
None
None | None | None
None
None | None
None
None
None | | her | | Cloud | 0.0 | # * * * | 0 = | 0=0= | 0===== | | Westh | 300 | winds,
knots | 160/20
160/20
180/18 | 330/12
330/12
330/12
320/10 | 7/041
1/041 | 160/17
160/17
180/17
180/17 | 180/18
180/18
180/18
180/18
160/20 | | | 9 | | 27.5% | 3388 | 66
| 72
72
81
81 | \$\$\$\$333 | | gu | | | 444 | 44.4 | 1:5 | 1.5 | iiiiii
vvvvv | | ditio | | Time | 848 | 859
920
1059
1259 | 1059 | 700
770
87,8
91,9 | 659
720
859
917
1101
1119 | | ing cor | | Flight Time Mach | 1/439
2/440
3/441 | 3/82t
1/825
5/826
6/827 | 5/832 | 1/836
2/837
3/838
4/839 | 1/845
3/845
5/846
5/848
6/848 | | Operating conditions | | Date | 4-11-1
4-4-1 | 9999
4444
4444 | 49-9 | \$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \$\$\$\$\$\$\$
\$ | TABLE XIX.- SUMMARY OF SOMIC-BOOM DATA FOR VARIOUS FLIGHTS OF ALRPIANE B FOR AN ALITTUDE RANGE FROM 26,000 TO 33,000 FEET | | | Wave | | p. ps | **** | M T W T T W | D M D M A | РКР | R R RN | RN P P P ON P P P P P P P P P P P P P P P | |------------------------------------|-----------|--|-------------|--------------------|---|--|---|--------------------------------------|--------------------------------------|--| | | | Io,
pos.,
lb-sec/sq ft | | 0.0600 | .0362
.0362
.0369
.037
.037 | .0384
.0396
.0560
.0476
.0633 | .0505
.0455
.0490
.0376
.0348 | .0532
.0467
.0562
.0622 | 1840.
06499
05260.
64430 | 9411
9411
9486
9486
9589
9589
9589 | | | Station 4 | | | 0.052 | 780.
180.
170.
770. | 870.
570.
570.
40. | 689.
689.
870.
870. | 480.
6880.
880.
870. | .076
.071
.070. | 700.
670.
870.
870.
870.
870.
870. | | | S | Δp ₁ , Δt _o ,
lb/sq ft pos., | | 11 | | | | 1111 | | | | | | Wave Δp_o , shape $1b/sq$ ft | | 2.61 | .90 | 2.03
44.5
50.5
50.5
50.5 | 1.55
1.16
1.06
1.06 | 1.16
2.33
1.04
2.50 | 1.10
1.19
1.52
1.15 | 1.14
2.67
2.08
1.14
2.05
1.66 | | g ta | | | | z É | N N N A | # # # # # # # | Y R R R R R | GR. H. | E E E E | THE WE WE WE WE | | Sonic-boom pressure signature data | | Io,
pos.,
lb-sec/sq ft | | 0.0627 | .0482
.0547
.0395
.0583 | .0538
.0539
.0570
.0501 | .0700
.0520
.0539
.0364
.0429 | .0520
.0561
.0569
.0567 | .0556
.0515
.0647
.0572 | .050
.051
.051
.050
.050
.050
.050
.050 | | sesure s | Station 3 | Δt _o ,
pos., | | 020.0 | 380.00
870.04
870.04 | 80.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.0000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000
60.000 | 848888 | 950.
070.
969 | 90.00
90.00
888
888 | 28.00.00.00.00.00.00.00.00.00.00.00.00.00 | | -boom pre | S. | wave Δp_o , Δp_1 , shape $1b/sq$ ft $1b/sq$ ft | | | | | | | | | | Sonic | | ∆p ₀ , | | 2.19 | 1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 1.72 | 2.5.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2 | 2.10
1.58
1.49 | 1.83 | 1.81
1.55
1.63
1.76
1.18
2.16
2.26 | | | | Wave
shape | feet | ez ez | K K K K K K | 55 55 55 55 | TR TREE | # # # | EN EN EN | # # # # # # | | | | Io,
pos.,
lb-sec/sq ft | 33,000 feet | 0.0591 | .0387
.0391
.0391 | 828248
828248 | .0330
.0330
.0370
.0440 | . 04.60
. 04.81
. 05.76 | 9473
9468
9468 | 885885
855855
1144985 | | | Station 1 | Δto,
pos., | | 0.078 | 270.
690.
770.
883.
440. | 070
986
970
970
570 | 470.
770.
770. | 888.88
888.88 | £426 | 790
070
070
080
070
080
070
070
070
070
07 | | | 뚌 | Δp _o , Δp ₁ , | | 1.05 | १
१
१
१
१
१
१ | 1.13 | 1.37 | 21.13 | 1.70 | 888884811 | | | | Δp _o ,
lb/sq ft | | 1.47 | 1.27 | 1.82
1.71
1.76
1.19
.99 | 1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 1.51
1.11
2.18 | 1.69 | 1.11.12.1
1.12.11.1
1.28.11.1
1.28.11.1
1.28.11.1 | | | | Cloud Precip-
cover itation | | None | None
None
None
None | None
None
None
None
None | None
None
None
None
None |
None
None
None | None
None
None | None
None
None
None
None
None | | er | | Cloud | | 0 = | 0 = = = 0 | 00==== | ⊕ = = = = | **** | | 0 = 0 = 0 = = = | | Weather | Surface | winds,
knots | | 180/16 | 190/20
190/20
200/37
200/37 | 170/11
160/15
160/15
160/12
150/16 | 130/13
130/13
160/15
160/15
180/12 | 200/15
200/15
220/15
220/13 | 180/11
200/17
200/17
130/8 | 110/9
110/9
190/15
190/15
230/17
230/17
190/15 | | | Surface | temp., |] | 55 | 888
87.7 | 76
82
87
88 | 558883 | 8899 | 1991 | 22999988 | | suc | | Mach | | 44 | 44444 | 44444 | iiiiiii
veeve | 4444 | 4444 | uuuuuuuu
vuuvuuv | | ditic | | Тіпе | | 1259 | 55 2 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 659
859
919
1100
1119 | 859
919
1059
1120
1130
1319 | 859
919
1301
1320 | 859
859
819
1859 | 707
719
879
919
1100
1118
1300 | | Operating conditions | | Flight Time Mach | | 7/457
8/438 | 1/852
2/853
3/854
1/855
5/855 | 1/860
3/862
4/863
5/864
6/865 | 1/868
2/869
3/870
4/871
5/872
6/873 | 3/876
4/877
6/879
7/880 | 1/881
3/883
4/884
5/885 | 1,887
2,888
4,899
1,899
1,899
1,899
1,899
1,899 | | Opera | | Date | | 4-10-64
4-10-64 | 99999
99999 | 6-10-64
6-10-64
6-10-64
6-10-64
6-10-64 | 999999
311111111
44444 | 6-12-6
6-12-6
6-12-6
6-12-6 | 6-13-6
6-13-6
6-13-6
6-13-6 | \$ | TABLE XIX.- SUMMANY OF SONIC-BOOM DATA FOR VARIOUS FLIGHTS OF AIRPLANE B FOR AN ALITHUDE RANGE FROM 28,000 TO 35,000 FEET - Continued | _ | | | | | | | | | | | | | | | | |------------------------------------|-----------|-----------------------------------|-------------|-------------------------------|-------------------|---|--|--|----------------|--------------------|------------------|---------|--------------------|----------------|---------------------------------------| | | | Wave | | N N E | æ | N N N N N N N N N N N N N N N N N N N | R IN | PCR | AN. | MN | 14 14
14 14 | NR | N N | N N | N N N N N N N N N N N N N N N N N N N | | | | Io,
pos.,
lb-sec/sq ft | | 0.0507 | .0559 | .0418
.0477
.0705
.0566 | .0475
.0327
.0293
.0293
.0393 | . 05.38
. 0442
. 0494
. 0484 | .0397 | .0351 | .0496
7540. | .0480 | .0500 | .0547 | 945.
9740. | | | Station 4 | Δt _O ,
pos.,
sec | | 0.066
.068
.770 | .079 | .063
270.
480.
570. | | 770.
069
180.
069 | .072 | .080 | .087 | .073 | .076 | .068 | .072
.072 | | | to. | Δp ₁ ,
lb/sq ft | | | ; | 1111 | | | | | | | | | | | | | Δp _o ,
lb/sq ft | | 9.5
1.51
2.55 | 1.20 | 1.41
1.21
2.59
1.62 | 1.13
40.11
69.18
89.11 | 2.1.28
2.04
2.68 | 2.00 | 1.04 | 1.04
.81 | 1.41 | 1.87 | 1.46 | 1.54 | | ta
ta | | Wave | | ^고
문문 | N. | ER SE SE | Y K W Y K | R R R | AN GN | N N | NR
NR | υ | NR
NR | N N | NN
NN | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | | 0.0601 | .057z | 545.
559.
5449.
57. | 4.550
9.508
9.888
5.888 | .5.4.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8 | .0636 | .0502 | まきま | .0371 | .0553 | 4450.
7950. | .0547 | | essure | Station 3 | Δt _o ,
pos.,
sec | | 0.069
470. | 98. | 570.
670.
4 | | .076
.070
.070 | 88. | .062 | .065
078 | ₹80. | 990. | 862 | %. § . | | c-boom pr | , s | Δp ₁ ,
lb/sq ft | | 111 | 1 | | 111111 | 1111 | | | | ļ | | | | | Sond | | wave Apo,
shape lb/sq ft | | 1.52
1.85
1.85 | 2,42 | 1.53 | 88.1
27.1
44.1
29. | 1.12
1.22
1.15
1.69 | 1.67 | 1.3 | 1.56 | 1.08 | 1.59 | 1.53 | 1.65
1.74 | | | | Wave | feet | A N N | Æ | F # # # | AN A | # # | SH EN | SK SK | AN AN | ပ | NR
NR | E E | # # | | | _ | Io,
pos.,
lb-sec/sq ft | 33,000 feet | 0.0447
4940.
9506 | 4T40. | 545
548
548
548
548 | . 497
. 493
. 458
. 458
. 486
. 988
. 953 | | .0514
.0490 | .0543
.0586 | .0518
.0485 | .0581 | .0646 | .989.
7490. | .0665 | | | Station 1 | Δt _o ,
pos., | | 0.068
7.90.
880. | .067 | 880.
1790.
479. | 686 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 970.
970. | .065
.074 | 990. | 620. | .075
.074 | .068 | .068 | | | S | Δ _{P1} ,
lb/sq ft | | 1.08 | 1.07 | 1.13 | 535538 | 8.1.1
8.0.6
8.0.6 | 1.17 | 1.28 | 1.11 | 1.09 | 1.23
1.04 | 1.17 | 1.35 | | | | ∆p _o ,
lb/sq ft | | 1.45 | 1.32 | 1.73 | 1.18
1.69
1.07
1.30
1.30 | 1.39 | 1.46 | 2.82 | 1.63 | 1.9 | 1.70 | 2.03 | 1.88 | | | | Cloud Precip-
cover itation | | None
None
None | None | -L
None
None | -L
None
None
None
None | None
None
None | None | None | None | None | None | None | None
None | | ier | | Cloud | | 0 = = | | +=== | * : = : = : | 0 = = = | * = | ⊕ = | e = | • | 0 = | : : | | | Weather | 9 | winds,
knots | | 20/11
80/8
80/8 | 260/8 | 140/9
140/9
150/10
140/13 | 200/10
200/10
200/15
200/15
200/15
200/15 | 180/20
180/20
190/23
190/23 | 200/50 | 200/15 | 180/15
180/15 | 3/09€ | 3/09£ | 010/5 | 120/4 | | | 9 | temp., | | 25
18
18 | 81 | 2555 | なななななる | 77
81
81 | 62 | 22 | 88 | 19 | 88 | 花花 | 72 | | suo | | Time Mach | | 444 | | uuuu
vuuu | uuituu
viviviv | iiiii
V | 1.5 | 4.1.
5.1. | 1.5 | 1.5 | 1.5
2.1 | 4.5
5.5 | 1.5
5.1 | | nditi | | Time | | 700
719
900 | | 901 | 700
719
859
1100
1120 | 700 200 619 | 2002 | 700 | 659 | 72 | 659 | 659 | 700 | | Operating conditions | | Flight | - | 1/895
2/896
3/897 | 7/89 6 | 3/905
14/906
5/907
6/908 | 1/909
2/910
3/911
1/912
5/913
6/914 | 1/917
2/918
3/919
4/920 | 1/933
2/934 | 2/942 | 1/949
2/950 | 1/958 | 1/963
2/964 | 1/971
2/972 | 1/978
2/979 | | Operat | | Date | | 6-15-64
6-15-64
6-15-64 | 6-15-64 | 6-16-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6- | 6-17-84
6-17-84
6-17-84
6-17-84
6-17-84
6-17-84 | 6-18-64
6-18-64
6-18-64
6-18-64 | 6-20-64 | 6-21-64
6-21-64 | 6-22-64 | 6-23-64 | ₹9-₹2-9
₹9-₹3-9 | 6-8-6
6-8-6 | 6-26-64
6-26-64 | TABLE XIX.- SUMMART OF SONIC-BOOM DATA FOR VARIOUS FLIGHENS OF AIRPLANE B FOR AN ALTITUDE RANGE FROM 26,000 TO 53,000 FEET - Continued | | | Wave | | œœ | N N | ZAZAO |) z | υpμ | ZZ | MR MP | N N | | Æ ¦ | N C N | |------------------------------------|-----------|---|-------------|--------------------|---
---|-------------------------------|------------------|----------------------|------------------|------------------|------------------|-----------------|----------------------------| | | | Io,
pos.,
lb.sec/sq ft | | まま。 | .0569 | 47.60.
27.80.
17.80.
17.80.
17.80. | .0530 | .056
456. | .0570 | .0414
.0467 | .0471 | .0085 | .0292 | . 0462
. 0363
. 0458 | | | Station 4 | Δt _O ,
pos., | | 0.079 | \$.
690. | 86.00
67.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | o70. | 970. | 920. | 980. | 970.
970. | .052 | 8,8 | 870.
1880. | | | S | Δp ₁ ,
lb/sq ft | | 11 | 11 | | | | | | | | | | | | | ΔΦ _ο ,
1b/sq ft | | 88. | 1.00 | 4.9.4.9.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8. | 1:98 | 1.86 | 1.80 | 1.04 | 1.08 | 35. | ¥Ÿ | 1.03 | | ta
ta | | | | A z | M M | E E E E E | | NR NR | N N | Đ Đ | EN EN | F F | zĸ | M T R | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | | 646°.0 | .0559 | 8.65.45.65
8.88.45 | .0580
.0572 | .0516 | 8.3
8.8 | .0648 | .0510 | .0542 | .0518 | .0569
.0566 | | essure | Station | Δto,
pos.,
sec | | 0.067 | 690. | 470.001
470.001
470.001 | 796.
786. | 970. | .065 | .074
.067 | .072 | .076
.075 | .072
.069 | 8.
7.88. | | -boom pr | Ċ | ∆p₁,
lb/sq ft | | 11 | | 11111 | | | | 11 | | | | 111 | | Sonic | | Δp _o ,
lb/sq ft | | 1.82 | 1.30 | 3.624.83 | 15.82 | 1.83 | 1.83 | 8
8
8 | 1.35 | 1.99 | 1.50 | 1.35
2.46
1.09 | | | | ₩аvе
shape | feet | E E | R R | AN A | J # # | 11 | £ £ | ææ | E E | S S | EN N | S K N | | | | lo,
pos.,
lb-sec/sq ft | 33,000 feet | 0.0706 | .062
.0605 | 4070
4070
4070
4070 | | .0488
.0694 | .0539 | .0606
4400. | .0465 | .0517 | .0629 | .0615
.0577
.0690 | | | Station 1 | Δt _o ,
pos., | | 0.072
.073 | .080 | 500000 | 90.
90.
90. | .092
.077 | 870.
870. | .082 | 870.
770. | .081
078 | 970.
770. | 80.
EC. | | | St | Δp ₁ ,
lb/sq ft | | 1.58 | 1.32 | 11.38 | | | 11 | | | | | | | | | Δφ _ο , Δφ ₁ ,
lb/sq ft lb/sq | | 1.9 | 1.86 | 1.53 | 1.91 | 1.62 | 1.15 | 1.45 | 1.73 | 1.85 | 1.6 | 1.67 | | | | Cloud Precip-
cover itation | | None | None | None
None
None
None | None
None | None | None | None | None | None
None | None
None | None
None
None | | ther | | Cloud | | 0 = | | 0-0 | * 72 | Θ= | 0 = | Θ= | 0 = | ⊖ = | 0 = | 2 = 2 | | Weath | | Surface
winds,
knots | | 210/7
210/7 | 120/6 | 160/7
160/7
200/3
200/3 | 160/8 | 200/8 | 140/5 | 170/6 | 200/7 | 220/15
220/15 | 170/8 | 210/13
210/13
230/17 | | | | Surface
temp.,
or | | 55 | 古古 | 52888 | 3 24 | 22 | 88 | 55 | ЬΈ | 88 | 88 | 82
82
91 | | Sin | | Mach | | 1.5 | 1.5 | 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 1.5 | 1.5 | 1.5 | 1.5 | 1:5 | 1.5 | 111 | | ditio | | Time . | | 88 | 730 | 788
859
919
1000 | 138 | 88 | 27
27
26
21 | 25,5 | 88 | 659 | 700 | 659
879
879 | | Operating conditions | | Flight | | 1/985 | 1/993
2/994 | 2/1000
3/1002
1/1003
5/1004 | 1/1007
2/1008 | 1/1015
2/1016 | 1/1023 | 1/1031
2/1032 | 1/1039
2/1040 | 1/1047 | 1/1055 | 1/1063
2/1064
3/1065 | | Operat | | Date | | 19-12-9
19-12-9 | 4 8 9 | \$ | 6-30-64
6-30-64
6-30-64 | 7- 1-64 | 7- 2-64 | 7- 3-6- | 49-4-7- | 7-5-64 | 7-6-6
49-9-7 | 7-7-
4-4-4- | TABLE XIX. - SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHES OF AIRPLANE B FOR AN ALLITUDE HANGE FROM 26,000 TO 33,000 FERT - Concluded | | | Wave | | Ü | I K d | zz | ZE | K AN | d di | A A | z K | z Š | ļ Š | р, р, | ت
ن | N. | M M | | NR | | l K O A | | ₽ d. | |-------------------------------|-----------|--|--------|----------------------
----------------------------|----------------|------------------|--------------|----------|--------------------|------------------|----------------|----------------|--|---------|----------------|----------------|--------|---------|--------|--|--------|---------------------| | | | Io,
pos.,
lb-sec/sq ft | | 0.0281 | 6740.
6790. | 55
5. | .0417 | .0226 | .0506 | .0631 | .0527
.0490 | .0501 | .0504 | .0628 | 9540. | 80±0. | .0532 | | 0.0394 | | 0.0590
.0344
.0544
.0544 | | 0.0522 | | | Station 4 | Δto,
pos.,
sec | | 9.076 | 8.8
 8.8 | .077
.076 | .078
.092 | .000 | .067 | 070.
690. | .075
670. | .077 | .089 | .071 | 980. | .077 | .092
.079 | | 0.082 | | 0.087
490.
989.
570. | | 0.082 | | | σ. | ∆p ₁ ,
1b/89 ft | | ŀ | | | | | | 11 | | | | | ļ | ļ | 11 | | 1 | | 1111 | | 11 | | | | Δ _{D_O} , Δ _{D₁,
1b/sq ft 1b/sq ft} | | 6.0 | 1.09 | 1.37 | 1.22 | 1.49 | 2.17 | 1.92 | 1.50 | 1.48 | 1.01 | 2.36 | 1.17 | 1.13 | .66 | | 1.01 | | 1.27
.65
1.24
2.14 | | ∄ ₹.: | | 8 | | Wave | | υ | E & | N Å | Å × | ပန်း | e E | AN AN | \$ £ | NN
NA | £ £ | N W | ě. | MR | N N | | Æ | | N N N N N N N N N N N N N N N N N N N | | P. N. | | ignature data | | Io,
Pos.,
lb-sec/sq ft | | 9440.0 | .0531 | .0556 | . 059
946 | .0304 | 986
4 | .0554 | 450.
0570. | .0548 | .0573
.0549 | 9090. | .0532 | .0520 | .0578
88.00 | | 0.0509 | | 0.0483
.0636
.0576
.0576 | | 0.0595 | | ssure s | Station 3 | Δto,
pos.,
sec | | 0.097 | 88 | 88.86 | 070. | 1962
1962 | .056 | \$96. | .070 | 073 | 99. | .062 | †L0. | 620. | 88. | | 0.068 | | 0.071
470.
570. | | 590.0 | | Sonic-boom pressure signature | St. | ∆p ₁ ,
lb/sq ft | | - | | | 11 | | | 11 | | | 11 | | | ! | | | - | | 1 1 1 1 | | 11 | | Sonic- | | ΔΦ _O ,
1b/sq ft | | កុ | 1,41 | 2.00 | 1.68 | .70 | 1.88 | 1.68 | 1.73 | 1.7 | 9.9
89.9 | 1.87 | 1.90 | 1.25 | 1.18 | | 1.31 | | 1.56
1.93
1.93
2.46 | | 3.16 | | | | Wave | feet | 33,000 feet 0.0680 P | 展展 | NR
NR | N N | 嚴색 | E | # #
| E E | AN W | AN AN | E E | Æ | H. | AN GN | feet | NR | feet | N.R. R.R. | feet | MR | | į | | Io,
pos.,
lb-sec/sq ft | 33,000 | | .0620
.0589 | .0632 | .0666
.0621 | .0531 | .0665 | .0655
.0655 | .0667 | .0659
.0545 | .0641 | .0667 | 9090* | .06è | .0705 | 32,000 | 0,0485 | 30,000 | 0.0519
.0529
.0661 | 28,000 | 0.0678 | | | Station 1 | Δto,
pos., | | 0.07t | 0.072
080 | | 576. | .070
.063 | 88 | r.
880. | 970. | .080 | .081 | .078
170. | 170٠ | 989 | 990. | | 690°0 | | 0.088
0.096
0.079 | | 0.076
470. | | | St. | Δp ₁ ,
lb/sq ft | | | | | | 11 | | | | | | | ł | | | | 1.11 | | 1.49 | | 1.74 | | | | Δφ _ο , Δφ ₁ , | | 29.5 | 1.43 | 1.56 | 2.91 | 2.03 | 1.81 | 1.70 | 1.53 | 1.81 | 1.63 | 1.46 | 1.60 | 1.89 | 2.6
2.3 | | 1.33 | | 0.98 | | 1.69 | | | | Precip-
itation | ļ | None | None
None | None | None | | None
None
None
None | | None | | er | | Cloud D | | θ | - ⊕ = | Θ = | | e = | Θ= | 0 = | θ= | Θ = | e = | ⊕ = | ₽ | θ | 0 = | | θ | | 9 = 0 = | | 0 = | | Weather | | Surface
winds,
knots | | 320/11 | 300/12
300/12
21/00/ | 180/7
180/7 | 150/11 | 170/13 | 360/12 | 330/6 | 160/12
160/12 | 170/15 | 150/14 | 41/051
150/14 | 150/12 | 150/11 | 180/6
180/6 | | 170/11 | | 050/5
050/5
170/8
170/8 | | 160/5 | | | | Surface
temp., | | 89 | \$88 | 22 | කිකි | 3,6 | 古字 | 69 | 88 | == | ## | R.R | 77 | 92 | 88 | | 76 | | 3888 | | 69 | | 900 | <u> </u> | Mach | 1 | 1.5 | | 5:1 | 1.5 | 1.5 | 1.5 | ц.
С.ц. | 1.5 | 4.1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | 1.5 | | 4.1.4.4.4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | _ | 1.5 | | ditic | | Time | | | 888 | | 88 | 659 | 729 | 700 | 659 | 88 | 700 | 05 K | 8 | 8 | 659 | | 718 | | 659
729
1259
1380 | | 859
920 | | Operating conditions | | Flight | | 1/1072 | 2/1072
3/1073
4/1074 | 1/1079 | 1/1087
2/1088 | 1/1095 | 1/1103 | 2/1111 | 2/1120 | 1/1127 | 1/1135 | 2/1143 | 1/1151 | 7-19-64 1/1159 | 1/1167 | | 2/861 | | 1/828
2/829
1/834
8/835 | _ | 3/830 | | Opera | | Date | | 4 | \$\$\$
8\$\$
24.4 | 4 | 7-10-6
7-10-6 | 7-11-6 | 7-12-64 | 7-13-64
7-13-64 | 7-14-64 1/1119 | 7-15-64 | 7-16-64 1/1135 | 7-17-6 4
7-17-6 4 | 7-18-64 | 7-19-64 | 7-20-64 | | 6-10-64 | | \$ \$ \$ \$ \$ | | 5 -9-9-9 | TABLE XX.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLIGHES OF AIRPIANE C FOR AN AINTITUDE FROM 29,000 TO 37,000 FEET | | | Wave | | C | | ы | | υ | NR | | H. | NR | | Д | | ೮೫ | AN A | | | | |------------------------------------|-----------|---|-------------|---------------|------------|---------------|-------------|------------------------|--------------------|-------------|---------------|----------------|-------------|---------------|-------------|---------------------|--|--|-------|------| | | # | Fo,
pos.,
lb-sec/sq ft | | 0.0331 | | 0.0331 | | 0.04.32 | .0524 | | 0.0171 | .0338 | | 0.0374 | | 0.0338 | .0331 | | | | | | Station | Δto,
pos.,
sec | | 090.0 | | 690.0 | | 090.0 | 990. | | 770.0 | .065 | | 0.053 | | 0.077
.075 | .067 | | | | | | Ś | Δp ₁ ,
lb/sq ft | | 1 | | ; | | ł | ! | | ; | ļ | | : | | | | | | | | | | Wave Δp_O , Δp_1 , Δt_O , shape $1b/sq$ ft $1b/sq$ ft sec | | 0.89 | | 0.86 | | 1.17 | 8. | | 0.45 | 1.13 | | 2.36 | | 1.24
.99 | .83 | | | | | 28 | | Wave | | ps; | | NR | | NR | E S | | В | NR. | | NP | | ۵. | AN AN | | | | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | | 0.0321 | | 0.0395 | | 0.0534 | 6650. | | 0.0300 | .0327 | | 0.0372 | | 0.0445 | .0382 | | | | | essure | Station | Δto,
pos., | | 0.068 | | 0.050 | | 0.072 | .057 | | 0.062 | .059 | | 0.055 | | 0.054
.070 | .060 | | | | | -boom pr | , ço | Δp ₁ ,
lb/sq ft | | ! | | ; | | 1 | ţ | | | } | | ł | | 11 | | | | | | Sonie | | Wave \$\triangle Dp_0, \$\triangle Dp_1,\$\$ shape 1b/sq ft 1b/sq ft | | 0.89 | | 1.23 | | 京:1 | 1.23 | | 1.17 | 1.08 | | 1.75 | | 2.95
1.85 | 9.49. | | | | | | | Wave
shape | feet | er, | feet | a. | feet | M. | N. | feet | oc. | NR | feet | l | feet | E K | E E | | | | | | | Io,
pos.,
lb-sec/sq ft | 37,000 feet | C.0274 | ¥,000 feet | 0.0304 | 33,000 feet | 0.0507 | ₹. | 31,000 feet | 0.0323 | .0423 | 30,000 feet | | 29,000 feet | 0.0489
9640. | .0495 | | | | | | Station 1 | Δto,
pos.,
sec | | 0.058 | | 0.055 | | | | | 0.0 | -062 | | 0.062 | .65 | | 1 | | 0.060 | .66. | | | , s | Δp ₁ ,
lb/sq ft | | 0.75 | | 0.70 | | 1.21 | 1 | | 0.92 | | | 1 | | 11 | | | | | | | | Δρ _ο , Δρ ₁ ,
lb/sq ft lb/sq ft | | 86.0 | | 1.07 | | 1.6 | 1.51 | | 1.09 | 1.53 | | ļ | | 1.56 | 1.31 | | | | | | | | | None | | None | | -R | None | | None | None | | None | | None | None | | | | | er | | Cloud Precip-
cover itation | | 0 | | 9 | | 0 | θ | | • | ⊖ | i | Φ | | Θ= | = 0 | | | | | Weather | | Date Flight Time Mach temp., winds, cover itetion OP, knots | | 180/14 | | 180/14 | | 130/8 | 190/10 | | 200/13 | 150/12 | | 180/11 | | 180/10 | 150/11 | | | | | | | temp., | | 15 | | 75 | | #. | đ | | 11 | 77 | | 11 | | 84 | 248 | | | | | su | | Mach | | 2.0 | | 1.8 | 1 | 1.5 | 2.0 | | 1.8 | 2.0 | | 1.7 | | 0.0 | 1.7 | | | | | nditio | | Time | | 705 | | 723 | | 1319 | 918 | | 1124 | 727 | | 722 1.7 | | 1118 | 720
919 | | | | | Operating conditions | | Flight | | 1/8/1 | | 2/875 | | 988/9 | 4/1154 | | 5/878 | 2/11/2 | | 2/882 | | 6/1156
8/1158 | 2/1160
4/1162 | | | | | Opera | | Date | | 6-12-64 1/874 | | 6-12-64 2/875 | | 6-13-64 6/886 1319 1.5 | 7-18-64 4/1154 918 | | 6-12-64 5/878 | 7-18-64 2/1152 | | 6-13-64 2/882 | | 7-18-64 6/1156 1118 | 7-19-64 2/1160 720 1.7
7-19-64 1/1162 919 1.7 | | | | TABLE XXI.- SUMMARY OF SONIC-BOOM DATA FOR VARIOUS FLICHTS OF ALRPIANE D FOR AN ALTITUDE OF 43,000 AND 49,900 FEET | _ | | | | | | | | | | | | | | | | | |------------------------------------|-----------
---|-------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|------------------------|------------------------|-------------------------|-------------|-------------------------| | | | Wave | | W. | N. | z | Ę. | z | MR | N. | NR | os. | MR | NR | | р | | | | Io,
pos.,
Lb-sec/sq ft | | 0.0701 | 1740. | .0512 | .0632 | .0800 | 7190. | .0599 | .0517 | 6750. | .0730 | 7690. | | 0.0579 | | | Station 1 | Δt _o ,
pos., | | 0.082 | 060. | .078 | 86. | 980. | .104 | 880. | 860. | .109 | .105 | 960. | | 0.086 | | | 63 | Δp ₁ ,
lb/sq ft | | 99*0 | ļ | | ļ | ļ | ! | ļ | | } | 1 | } | | i
i
t | | | | Wave Apo,
shape lb/sq ft | | 1.70 | 1.03 | 1.35 | 1.47 | 1.55 | 1.13 | 1.71 | 8. | .82 | 1.29 | 1.29 | | 2.25 | | t a | | | | N. | æ | NR | Ħ | z | z | Æ | z | ΝΡ | Æ | æ | | ρ, | | Sonic-boom pressure signature data | 3 | Io,
pos.,
lb-sec/sq ft | | 0.1010 | .0593 | .0788 | .0873 | .0802 | .0683 | .0812 | 6890. | .0688 | .0735 | .0830 | | 0,0860 | | essure | Station | Δt _o ,
pos., | | 0.084 | .105 | 88 | .083 | 960. | 8 | 100 | .083 | 88. | .100 | .108 | | 480.0 | | -boom pr | ισ. | Δp ₁ ,
lb/sq ft | | 06.0 | ł | - | ļ | į | } | - | 1 | İ | | ļ | | 1 | | Sonie | | Wave Apo,
shape lb/sq ft | | 2.32 | 1.03 | 1.69 | 1.7 | 79.7 | 1.77 | 1,49 | 1.62 | 5.36 | 1.57 | 1.27 | | 3.83 | | | | Wave
shape | feet | 1 | MR. | ₽. | W. | Æ | z | z | × | Ä | z | NR | feet | MR | | | | Io,
pos.,
lb-sec/sq ft | 49,900 feet | | | - | | 0.0769 | .0738 | .0705 | .0753 | .1120 | 4880. | .0877 | 43,000 feet | 0,0712 | | | Station 1 | Δto,
pos.,
sec | | 1 | | - | | 0.1057 | .093 | 011. | .1005 | ф. | 660. | .102 | | 0.090 | | | ES. | Δp ₁ ,
lb/sq ft | | 1.12 | 1.10 | | | - | i | | | 1 | 1 | ļ | | 1,41 | | | | Δp_{o} , Δp_{i} , Δp_{e} | | 1.69 | 1,₹ | 2.39 | 1.46 | 1.24 | 1.44 | 1.26 | 1.51 | 1.87 | 1.92 | 1.95 | | 1.68 | | | | Cloud Precip-
cover itation | | None | -S, F | None | None | | er. | - | Cloud | | θ | Ф | 0 | θ | 0 | ⊖ | θ | Ф | 0 | 0 | 0 | | ө | | Weather | 9 | | | 180/15 | 360/15 | Cella | 170/1 | 01/061 | 210/18 | 180/12 | 360/10 | 200/10 | 220/20 | 190/10 | | 91/061 | | | 9 | Flight Time Mach temp., winds, | | 82 | 24 | Ж | 94 | 81 | 83 | | δζ | 92 | 88 | 88 | | 48 | | 9 | | Мась | | 2.0 | 2.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 5.0 | 2.0 | 2.0 | 2.0 | | 1.85 | | dition | | Тіле | | 920 2.0 | 920 2.0 | 916 2.0 | 920 2.0 | 921 2.0 | 919 2.0 | 920 2.0 | 925 2.0 | 980 | 920 | 920 | | 919 | | Operating conditions | | | | 3-23-64 4/313 | 3-25-64 1/326 | 4/334 | 3-27-64 4/342 | 10/747 | 10/755 | 5-27-64 10/763 | 10/77 | 4/1018 | 4/1058 | 10/1090 | | 10/952 | | Operat | | Date | | 3-23-64 | 3-87-64 | 3-26-64 4/334 | 3-27-64 | 5-25-64 10/747 | 5-26-64 10/755 | 5-27-64 | 5-28-64 10/771 | 7- 1-64 4/1018 920 2.0 | 7- 6-64 4/1058 920 2.0 | 7-10-64 10/1090 920 2.0 | | 6-22-64 10/952 919 1.85 | TABLE XXII.- SUMMARY OF DATA POINTS AND NOMINALS AT EACH MEASURING STATION FOR VARIOUS FLIGHT CONDITIONS | | | Altitude | | s | tation 1 | | S | tation 3 | | St | cation 4 | | |---------------------------------|------------------|--|--|------------------------------|--|--|------------------------------|--|--|------------------------------|---|--| | Table | Airplane | above ground
level,
ft | Mach | Number of
data points | Δp _{o,calc} | I _{o, calc} | Number of
data points | Δp _{o,calc} | I _{o, calc} | Number of
data points | Δp _{o,calc} | Io, calc | | I
I
I | A
A
A | 41,000
38,000
37,000
36,000 | 2.0
1.5
1.5
1.5 | 3
8
1
1 | 0.90
.93
.96
1.00 | 0.0235
.0247
.0255
.0263 | 3
9
1
1 | 0.81
.81
.84
.88 | 0.0221
.0227
.0235
.0243 | 3
8
1 | 0.64
.63
.65
.67 | 0.0188
.0192
.0197
.0203 | | II
II
II
II | A
A
A
A | 35,000
35,000
35,000
34,000
33,000
33,000 | 2.0
1.7
1.5
1.8
1.7 | 1
26
1
1
2 | 1.17
1.09
1.05
1.17
1.19 | .0292
.0277
.0273
.0290
.0293
.0289 | 1
26
1
1
2 | 1.02
.96
.91
1.02
1.03 | .0269
.0256
.0251
.0268
.0271
.0265 | 1
1
25
1
1 | .77
.73
.69
.77
.77 | .0223
.0213
.0209
.0222
.0224
.0219 | | III | A
A | 32,000
32,000 | 1.8 | 3
103 | 1.27
1.18 | .0307
.0297 | 3
101 | 1.09
1.02 | .0283 | 3
106 | .81
.76 | .0232
.0224 | | IV | A | 31,000 | 1.5 | 17 | 1.23 | .0306 | 17 | 1.06 | .0281 | 17 | .78 | .0559 | | v
v | A
A
A | 30,000
30,000
30,000 | 1.8
1.7
1.5 | 76
68 | 1.38
1.35
1.28 | .0326
.0320
.0315 | 78
70 | 1.18
1.16
1.10 | .0300
.0295
.0289 | 1
74
69 | .86
.84
.80 | .0243
.0239
.0234 | | VI
VI
VI | A
A
A
A | 29,000
29,000
29,000
29,000 | 1.8
1.7
1.55
1.5 | 1
27
1
29 | 1.44
1.41
1.36
1.34 | .0336
.0331
.0326
.0324 | 1
26
1
29 | 1.22
1.20
1.15
1.14 | .0308
.0304
.0298
.0297 | 25
1
26 | .89
.87
.84
.83 | .0249
.0245
.0241
.0240 | | VII | A
A | 28,000
28,000 | 1.7 | 3 ⁴
168 | 1.47 | .0341
.0335 | 33
169 | 1.24 | .0312
.0305 | 3 ¹ 4
155 | .89
.85 | .0251
.0245 | | AIII
AIII
AIII | A
A
A | 27,000
27,000
27,000
26,000 | 1.7
1.5
1.3
1.5 | 5
8
5
2 | 1.54
1.47
1.36
1.54 | .0352
.0346
.0347
.0357 | 5
8
4
2 | 1.29
1.22
1.14
1.27 | .0321
.0314
.0316
.0323 | 5
8
4
2 | .92
.87
.81 | .0256
.0251
.0252
.0256 | | IX
IX | A
A
A | 24,000
24,000
24,000 | 1.5
1.4
1.3 | 11
8
1 | 1.69
1.62
1.56 | .0382
.0377
.0383 | 11
8
1 | 1.37
1.32
1.27 | .0341
.0340
.0343 | 11
7
1 | .95
.92
.88 | .0267
.0266
.0269 | | X
X
X
X
X | A
A
A
A | 23,000
23,000
23,000
23,000
21,000
21,000 | 1.6
1.5
1.4
1.3
1.5
1.4 | 1
2
2
11
3
3 | 1.81
1.77
1.70
1.64
1.97
1.89 | .0396
.0391
.0396
.0425
.0420 | 1
2
4
13
3
3 | 1.46
1.42
1.37
1.31
1.52
1.47 | .0353
.0350
.0349
.0352
.0369
.0368 | 1
1
4
13
3
3 | 1.00
-97
-94
-90
1.03 |
.0275
.0273
.0272
.0274
.0285
.0284 | | и
и | B
B
B | 46,000
46,000
45,000 | 1.5
1.4
1.5 | 21
7
9 | 1.12
1.08
1.16 | .0398
.0394
.0409 | 2 <u>1</u>
8
9 | .97
.94
1.00 | .0356
.0355
.0365 | 21
8
8 | .75
.73
.77 | .0296
.0295
.0302 | | XII | В | 44,000 | 1.5 | 69 | 1.20 | .0420 | 70 | 1.02 | .0373 | 70 | -79 | .0309 | | XIII | B
B
B | 43,000
42,000
42,000 | 1.5
1.5
1.4 | 20
17
4 | 1.25
1.28
1.22 | .0430
.0443
.0437 | 19
17
4 | 1.05
1.08
1.05 | .0382
.0391
.0390 | 19
17
3 | .81
.83
.80 | .0315
.0322
.0321 | | XIV | B
B | 41,000
41,000 | 1.6 | 1
32 | 1.37
1.32 | .0463
.0454 | 1
32 | 1.14 | .0403 | 1
32 | .87
.85 | .0331
.0329 | | XV
XV
XV | B
B
B | 40,000
40,000
39,000
38,000 | 1.5
1.4
1.5
1.4 | 6
3
17
13 | 1.36
1.31
1.42
1.41 | .0467
.0462
.0483
.0491 | 6
3
18
13 | 1.15
1.11
1.18
1.18 | .0411
.0410
.0421
.0431 | 6
2
18
13 | .87
.84
.89
.88 | .0336
.0335
.0344
.0351 | | XVI | B
B | 37,000
36,000 | 1.5
1.5 | 76
7 | 1.53
1.59 | .0513 | 77 | 1.26
1.29 | .0444 | 77 8 | .93
.96 | .0360
.0368 | | XVII | В | 35,000 | 1.5 | 105 | 1.65 | .0546 | 105 | 1.34 | .0468 | 105 | .98 | .0377 | | XVIII | B
B
B | 34,000
34,000
34,000 | 1.6
1.5
1.4 | 1
14
3 | 1.77
1.72
1.65 | .0570
.0562
.0558 | 2
14
3 | 1.42
1.38
1.34 | .0482
.0479
.0478 | 12
3 | 1.03
1.01
.97 | .0387
.0384
.0383 | | XIX
XIX
XIX
XIX
XIX | B
B
B
B | 35,000
35,000
32,000
30,000
30,000
28,000 | 1.5
1.4
1.5
1.3
1.2
1.5 | 115
2
1
2
2
2 | 1.78
1.72
1.85
1.84
1.75
2.17 | .0577
.0573
.0592
.0620
.0645
.0658 | 115
2
1
2
2
2 | 1.42
1.38
1.47
1.45
1.37
1.67 | .0489
.0488
.0501
.0527
.0542
.0549 | 114
2
2
2
2
2 | 1.03
1.00
1.06
1.03
.97
1.17 | .0391
.0390
.0398
.0416
.0428 | | xx | С | 37,000
to
29,000 | 2.0
to
1.5 | 10 | | | 11 | | | 11 | | | | IXX | מ | 49,900
to
43,000 | 2.0
to
1.85 | 12 | | | 12 | | | 12 | | | Figure 1.- Planview sketch of test area showing flight track, measuring stations, and facilities. (b) Airplane B. (a) Airplane A. (c) Airplane C. (d) Airplane D. Figure 2.- Airplanes used in test program. (a) Volume distribution. (b) Lift distribution. (c) Sonic-boom characteristics in parametric form. Figure 3.- Definition of inputs to sonic-boom overpressure calculations by the machine computer procedures described in appendix of reference 1. Figure 4.- Sample sonic-boom pressure time histories for both inside and outside microphone locations. (Data are for airplane A at station 1.) Figure 5.- Schematic diagrams showing some categories of waveforms measured at ground level during the tests. Figure 6.- Probability of equaling or exceeding a given value of the ratio of measured to calculated overpressures for airplane A. Figure 6.- Continued. Figure 6.- Concluded. Figure 7.- Probability of equaling or exceeding a given value of the ratio of measured to calculated overpressures for airplane B. Figure 7.- Continued. Figure 7.- Concluded. Figure 8.- Probability of equaling or exceeding a given value of the ratio of measured to calculated positive impulse for airplane A. Figure 8.- Continued. Figure 8.- Concluded. Figure 9.- Probability of equaling or exceeding a given value of the ratio of measured to calculated positive impulse for airplane B. Figure 9.- Continued. .999 0 0 .99 .90 Probability .5 .10 .05 .01 (c) Station 4 (537 data points) . L .2 .5 ل 5 2 $\rm I_{\rm o,\,meas}/I_{\rm o\,,calc}$ Figure 9.- Concluded. Figure 10.- Sonic-boom pressure signatures for airplane A at an altitude of 28,000 feet and a Mach number of 1.5 from five microphones grouped within 8 inches of ground. Figure 11.- Measured sonic-boom pressure signatures at several points along the ground track of airplane A in steady-level filght at Mach number 1.7 and an altitude of 28,000 feet at different times of day. (a) Time of flight, 0750 hours. (b) Time of flight, 0930 hours. Figure 11.- Concluded. Figure 12.- Measured ground overpressures at several measuring stations at different distances from the ground track. Data are for eight flights of airplane A on April 6, 1964 for an altitude of 28,000 feet at Mach numbers of 1.5 and 1.7. Figure 13.- Measured outside and inside pressure traces at station 1 for two different flights of airplane A. (b) Inside microphone. Inside microphone (b) Airplane D. Figure 14. - Measured outside and inside pressure traces at station 1 for airplanes A and D. (a) Airplane A. Figure 15.- Measured inside peak overpressure as a function of outside positive impulse as measured at station 1 for airplanes A and B. 2/1/05 "The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." -National Aeronautics and Space Act of 1958 ## NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge. TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge. TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English. TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles. SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies. Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546